跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林志寶
Chih-Pao Lin
論文名稱: 台灣骨材鹼反應潛能資料庫建置
The Database for Potential Alkali Reactivity of Aggregates in Taiwan
指導教授: 田永銘
Yong-Ming Tien
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
畢業學年度: 90
語文別: 中文
論文頁數: 116
中文關鍵詞: 鹼-骨材資料庫
外文關鍵詞: Alkali-Aggregate Reaction, database
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘 要
    本文主要針對台灣骨材鹼反應潛能資料庫的建置,提供國內工程界使用良質骨材的參考,避免使用反應性骨材引發鹼-骨材反應的發生。在資料庫呈現上,以網頁製作為主軸,目的是希望藉由網際網路傳播功能,快速地將這方面的訊息傳遞出去,使國人能重視鹼-骨材反應可能帶來的危害。一般檢測骨材鹼反應性的標準試驗方法(如CNS13617或ASTM C295、CNS13618或ASTM C289、CNS13619或ASTM C227、ASTM C1105、ASTM C1260、ASTM C1293等),往往需耗費三個月至六個月的時間,甚至長達一年,而本資料庫不但提供骨材鹼反應潛能試驗資料外,未來將增加部分地區之骨材,添加波索蘭材料(以台電飛灰與中鋼水淬爐石)抑制鹼-骨材反應之研究成果。讓不得已需使用具反應性骨材的情況下,提供可能的解決方法。此外,根據本研究補充調查的試驗成果指出,位於蘇花公路線上之南澳北溪(E03)與南澳溪(E04)骨材,在ASTM C1260與ASTM C1293(2.0%Na2Oeq.)試驗的膨脹量,超出相同試驗條件下之反應性骨材(海岸山脈斑狀安山岩悲極比例含量)之膨脹量,尤以南澳溪(E04)骨材為最。此現象在本研究33處取樣骨材中僅出現在這兩處骨材,代表意義非凡。再者,蘇花公路一帶與花東地區同屬於變質岩區,極有可能發現新的案例與反應性岩種。由於國內對於東部砂石骨材的依賴與日俱增,建議未來也應著重蘇花公路沿線骨材的研究,以避免混凝土工程誤用反應性骨才,導致建物損壞。


    The Database for Potential Alkali Reactivity of Aggregates in Taiwan
    ABSTRACT
    The main goal of this article is to build up a database system which include data of aggregates potential reaction with alkali in Taiwan. Thus it could be reference materials to concrete constructions while the step of select good aggregates and prevent damage occurred by such reactions. Moreover , there are several advantages by using web technique to conduct the database , such as the convenience of use , the spread of this information we offer. We hope people in Taiwan could pay more attention to Alkali-Aggregate Reactions(AARs) by the establishment of this database.
    Although there are several methods(CNS13617 or ASTM C295 , CNS13618 or ASTM C289 , CNS13619 or ASTM C227 , ASTM C1105 , ASTM C1260 , ASTM C1293) could be used to evaluate the character of aggregate specimen in AARs , they are usually taken a lot of time to do. This situation may lead to cost raised and progress delayed on constructions. The database contain not only the test data of aggregates but also the inhibitory effects against AARs by using pozzolan materials(fly ash and slag). It could provide probable suggestions when reactive aggregates are misused.
    Furthermore , based on our results of the part named “supplemental investigate” in this article , we have observe an obvious change in AARs of aggregates from Nan-ao north river (E03) and Nan-ao river(E04) in ASTM C1260 and ASTM C1293. And their expansions are larger than that of andesite from coastal range(highly reactive aggregate) , aggregate from Nan-ao river especially. This kind of phenomena is unique in our results and it would be worth researching in depth. Because of they are located at metamorphic area , it is possible to find another type of reactive aggregates or injured cases. In order to prevent any damage occurred by AARs on concrete structures , we suggest to using conscientious method to research the change in AARs of aggregates from this area.

    目 錄 頁次 目錄 I 圖目錄 IV 表目錄 VII 照片 VIII 第一章 緒論 1 1.1 研究動機 1 1.2 資料庫建置 2 1.3 論文架構 3 第二章 文獻回顧 4 2.1 鹼-骨材反應研究發展起源 4 2.2 國內鹼-骨材反應研究成果 4 2.2.1 室內試驗成果 6 2.2.2 案例調查成果 9 2.3 鹼-骨材反應試驗方法之探討 10 2.4 預防鹼-骨材反應發生的檢核方法與試驗結果評估 14 2.5 地理資訊系統 20 2.5.1 地理資訊系統發展簡介 20 2.5.2 地理資訊系統的架構 22 2.5.3 地理資訊系統功能介紹 23 2.6 鹼-骨材反應資料庫系統介紹 24 第三章 骨材之鹼反應性補充調查 26 3.1  前言 26 3.2 補充調查規劃 27 3.2.1規劃補充調查區域 27 3.2.2 取樣成果 28 3.3  試驗方法 31 3.3.1 設計鹼量 31 3.3.2 水泥砂漿棒法(ASTM C227) 31 3.3.3 加速水泥砂漿棒法(ASTM C1260) 36 3.3.4 混凝土角柱法(ASTM C1293) 39 3.4  試驗結果 41 3.4.1 蘇花公路段 41 3.4.2 台九線公路花蓮至玉里段 51 3.4.3 西部河川 60 第四章 資料庫建置 70 4.1 資料來源 70 4.2 資料庫建置工具 77 4.3 資料庫網頁建置成果 79 4.3.1 已建置資料 79 4.3.2 資料庫網頁架構 81 4.3.3 資料庫網頁導覽 83 4.4 ACCESS資料庫的建置與使用 91 4.4.1 資料建置 91 4.4.2 使用方法 92 4.5 鹼-骨材反應風險評估 93 4.5.1 資料建置 93 4.5.2 使用方法 95 第五章 結論與建議 98 5-1 結論 98 5-2 建議 99 參考文獻 100 附錄A卜特蘭水泥試驗報告 105 附錄B 西部河川ASTM C1293(2.0%Na2Oeq.)試驗結果 107 圖  目 錄 頁數 圖2.1台灣骨材之鹼反應潛能分布圖 5 圖2.2預防混凝土骨材因鹼-矽反應導致結構劣化的預防措施 16 圖2.3骨材鹼反應性等級劃分 19 圖2.4混凝土角柱試驗與加速水泥砂漿棒試驗結果比較 20 圖3.1前人研究之資料點分布與待補充調查的區域 28 圖3.2本研究補充調查試驗取樣點分布圖 30 圖3.3水泥砂漿棒法試驗流程圖(ASTM C227) 35 圖3.4加速水泥砂漿棒法試驗流程圖(ASTM C1260) 38 圖3.5混凝土角柱法試驗流程圖(ASTM C1293) 40 圖3.6蘇花公路段沿線七處骨材取樣點分布圖 41 圖3.7蘇花公路段骨材膨脹歷時曲線(ASTM C227, 2.0% Na2Oeq.) 42 圖3.8蘇花公路段骨材膨脹歷時曲線(ASTM C1260) 44 圖3.9白守蓮斑狀安山岩膨脹歷時曲線(ASTM C1260) 44 圖3.10蘇花公路段骨材 ASTM C227與ASTM C1260試驗結果比較 45 圖3.11蘇花公路段骨材膨脹歷時曲線(ASTM C1293 , 2.0% Na2Oeq.) 46 圖3.12蘇花公路段骨材 ASTM C1293與ASTM C1260試驗結果比較 47 圖3.13不同斑狀安山岩含量之膨脹量增率歷時曲線 49 圖3.14不同斑狀安山岩含量之膨脹量增率歷時曲線 (ASTM C1293 , 2.0% Na2Oeq.) 49 圖3.15蘇花公路骨材之膨脹量增率歷時曲線 (ASTM C1293 , 2.0% Na2Oeq.) 50 圖3.16台九線公路花蓮至玉里段四處骨材取樣點分布圖 51 圖3.17台九線花蓮至玉里段骨材膨脹歷時曲線 (ASTM C227, 2.0% Na2Oeq.) 52 圖3.18台九線花蓮至玉里段骨材膨脹歷時曲線(ASTM C1260) 54 圖3.19台九線公路花蓮至玉里段ASTM C227與ASTM C1260 試驗結果比較 54 圖3.20台九線花蓮至玉里段骨材膨脹歷時曲線 (ASTM C1293 , 2.0% Na2Oeq.) 56 圖3.21豐平橋骨材膨脹歷時曲線(ASTM C227, 2.0% Na2Oeq.) 57 圖3.22馬太鞍溪骨材膨脹歷時曲線(ASTM C227, Na2Oeq.=2.0%) 58 圖3.23台灣西部河川22處骨材取樣點分布情形 60 圖3.24西部河川骨材不同材齡之ASTM C1260試驗結果 62 圖3.25本研究西部河川骨材ASTM C1293與ASTM C1260試驗結果比較 65 圖3.26西部河川骨材ASTM C227試驗結果比較 68 圖3.27西部河川骨材ASTM C1260試驗結果比較 68 圖3.28西部河川骨材ASTM C1293試驗結果比較 69 圖4.1本資料庫之主要資料來源 72 圖4.2本資料庫資料點之空間分布圖 80 圖4.3本資料庫網頁架構圖 82 圖4.4本資料庫網頁主畫面 84 圖4.5台灣骨材鹼反應潛能資料庫首頁 84 圖4.6東部地區主畫面—研究概況 85 圖4.7東部地區資料點試驗資料類別 85 圖4.8東部地區案例調查成果 86 圖4.9東部地區研究概況—資料點分布圖 86 圖4.10花蓮縣資料點分布概況 87 圖4.11花蓮縣豐濱鄉資料點分布及研究概況 87 圖4.12室內標準試驗結果與分析之一 88 圖4.13室內標準試驗結果與分析之二 88 圖4.14現地案例所在環境 89 圖4.15案例現場觀察 89 圖4.16案例鑽心試體觀察 90 圖4.17鑽心試體之醋酸鈾螢光試驗成果 90 圖4.18 ACCESS關連式資料庫查詢結果 92 圖4.19西部河川骨材鹼反應性等級劃分 94 圖4.20不同安山岩含量之鹼反應性等級劃分 96 表  目 錄 表2.1台九線上疑似受鹼-骨材反應侵害之案例 10 表2.2晚期膨脹岩石之反應性隱晶質及微晶質石英 13 表2.3骨材鹼反應性等級之劃分 17 表2.4發生鹼-矽反應之風險評估 17 表2.5核定預防措施的等級 18 表2.6普蜀蘭材料的添加量 18 表2.7 ACRES公司鹼-骨材反應資料庫範例 25 表3.1本計劃補充調查試驗取樣點空間資料 29 表3.2各粒徑骨材之重量百分比 34 表3.3粗骨材要求級配 39 表3.4蘇花公路段骨材試驗判別結果 48 表3.5台九線花蓮至玉里段骨材試驗結果表 57 表3.6西部河川骨材ASTM C227試驗結果 (2.0%Na2Oeq.) 61 表3.7西部河川骨材ASTM C1293試驗結果 (2.0%Na2Oeq.) 64 表3.8西部河川取樣點試驗結果比較 67 表3.9西部河川骨材與海岸山脈斑狀安山岩試驗結果比較 69 表4.1本資料庫之室內試驗項目及資料來源 76 表4.2本資料庫之現地案例調查工作內容及資料來源 72 表4.3本資料已建置資料之統計表 79 表4.4試驗數據資料表格之屬性欄位 91 表4.5西部11條主要河川骨材鹼反應潛能試驗結果(賴武德,2001) 95 表4.6不同安山岩含量之鹼反應潛能試驗結果(張庭華,2001) 97 照  片   頁數 照片2.1海岸山脈斑狀安山岩 8 照片2.2花蓮溪安山岩 8 照片3.1豐平橋帽樑損壞情形 58 照片3.2馬太鞍溪橋帽樑損壞情形 59 照片3.3馬蘭鉤橋帽樑損壞情形 59 照片3.4試體表面劣化現象 64 照片4.1 Garmin II手持式GPS接收機 78

    參考文獻
    1. 王櫻茂、吳振成、楊宏儀、田永銘、陳裕新,「台灣地區鹼-骨材反應特性之研究」,行政院國科會專題研究報告,NSC78-0410-E006-20,臺南(1989)。
    2. 王櫻茂、吳振成、楊宏儀、田永銘、許智能,「以普蜀蘭混合材料防治鹼-骨材反應(一)」,行政院國科會專題研究報告,NSC79-0410-E006-32,臺南(1991)。
    3. 王櫻茂、楊宏儀、田永銘、許智能,「以普蜀蘭混合材料防治鹼-骨材反應(二)」,行政院國科會專題研究報告,NSC80-0410-E006-27,臺南(1991)。
    4. 王淑慧,「台灣地區岩石之鹼-骨材反應潛能研究」,碩士論文,國立中央大學應用地質研究所,中壢(1999)。
    5. 田永銘、楊世和,「台灣東部反應性骨材之探討及分析」,East Asia Alkali-Aggregate Seminar,Tottori,Janpan,pp13-26(1997)。
    6. 田永銘、王淑慧、潘亮宇、陳維民,「混凝土鹼-骨材反應劣化與防治」,構造物破壞原因探討與處置研討會論文集,台北,第125-150頁(1999)。
    7. 田永銘、王淑慧、彭柏翰、賴武徳,「台灣安山岩質骨材之鹼反應行為」,第五屆結構工程研討會,台中,第643~651頁(2000)。
    8. 田永銘、楊世和、王淑慧,「台灣東部骨材鹼反應潛能研究」,中國土木水利工程學刊,第十三卷,第一期,第217-226頁(2001)。
    9. 田永銘,「台灣混凝土骨材之鹼反應潛能研究」(1/3),行政院國科會專題研究計劃,NSC89-2211-E-008-108,中壢(2001)
    10. 田永銘,「台九線豐平橋鑽心試體鹼-骨材反應檢驗報告」,交通部公路局第四區工程處,委託研究報告(2002)。
    11. 李釗、饒正、張道光、陳桂清,「花蓮港區混凝土構造物鹼質與粒料反應之調查研究」,台灣省交通處港灣技術研究所期末報告(1998)。。
    12. 林晏吉,「花東地區鹼-骨材反應之成因探討」,碩士論文,國立中央大學土木工程研究所,中壢(1999)。
    13. 施保旭,地理資訊系統,儒林圖書有限公司,台北,第42-51頁、第74-76頁、第244-274頁(1995)。
    14. 陳仁達,「花東地區鹼-骨材反應及抑制方法」,碩士論文,國立中央大學土木工程研究所,中壢(1998)
    15. 彭柏翰,「花蓮溪安山岩含量之悲極效應研究」,碩士論文,國立中央大學土木工程研究所,中壢(2000)。
    16. 張真誠、蔡昇諭,關連式資料庫系統之應用,松崗電腦圖書資料股份有限公司,台北,第四章第6頁(1991)。
    17. 張文恭,「花蓮地區單一岩種之鹼-骨材反應研究」,碩士論文,國立中央大學應用地質研究所,中壢(2000)。
    18. 張庭華,「海岸山脈安山岩之鹼-骨材反應特性及抑制方法」,碩士論文,國立中央大學土木工程研究所,中壢(2001)。
    19. 褚炳麟、顏聰、盧俊寬,「台灣西部地區砂石料源鹼質反應調查研究」,交通部國道新建工程局研究報告,台北(1994)。
    20. 潘亮宇,「花蓮溪安山岩骨材之鹼反應行為及抑制方法」,碩士論文,國立中央大學土木工程研究所,中壢(2002)。
    21. 楊世和,「台灣東部反應性骨材之探討及分析」,碩士論文,國立中央大學土木工程研究所,中壢(1997)。
    22. 賴武德,「台灣西部河川砂石及北部安山岩之鹼-骨材反應潛能研究」,碩士論文,國立中央大學應用地質研究所,中壢(2001)。
    23. 經濟部中央地質調查所,「八十八下半年及八十九年度中央地質調查所年報」,台北,第44-46頁(2001)。
    24. ASTM C1260-94,“Standard Test Method for Potential Alkali Reactivity of Aggregate(Mortar Bar Method), ”Annual Book of ASTM Standards, p.644-647(1994).
    25. ASTM C1293-95,“Standard Test Method for Concrete Aggregates by Determination of Length Change of Concrete due to Alkali -Silica Reaction,”Annual Book of ASTM Standards, pp.648-653(1995).
    26. ASTM C227-90,“Standard Test Method for Potential Alkali Reactivity of Cement-Aggregate Combinations(Mortar Bar Method),”Annual Book of ASTM Standards, p.125-129(1990).
    27. Berube, M. A. and Fournier, B.,“ Canadian Experience with Testing for Alkali-Aggregate Reactivity in Concrete, ”Cement, Concrete, and Aggregates, Vol.15, p.27-47(1993).
    28. Fournier, B. and Berube, M. A.,“ Application of the NBRI Accelerated Mortar Bar Test to Siliceous Carbonate Aggregates Produced in the St. Lawrence Lowlands(Quebec, Canada). –Part 2:Proposed Limits, Rates of Expansion, and Microstructure of Reaction Products,”Cement and Concrete Research, Vol.21, No.6, p.1069-1082(1991).
    29. Fournier,B., Be´rube´,M.A. and Rogers,C.A.,“ Proposed Guidelines for the Prevention of Alkali-Silica Reaction in New Concrete Structures,” Transportation Research Record ,Record 1668 , pp.48-53(1999).
    30. Fournier,B. and Malhotra,V.M.,“Evaluation of Laboratory Test Methods for Alkali-Silica Reactivity,”Cement,Concrete,and Aggregates,Vol.21,No.2,pp.173-184(1999).
    31. Gillott,J.E.,“Alkali-Aggregate Reaction in Concrete,”Engineering Geology,Vol.9,pp.303-326(1975).
    32. Gillot,J.E.,Dunan,M.A.G. and Swenson,E.G.,“Alkali Aggregate Reaction in Nova Scotia,”Cement and Concrete Research, Vol.3,pp.521-535(1973).
    33. Hadley,D.W.,“Alkali Reactivity of Carbonate Rocks-Expansion and Dedolomitization,”Proceeding Highway Research Board,Vol.40, pp.462-474(1961).
    34. Hooton, R. D. and Rogers, C. A.,“ Development of the NBRI rapid mortar bar test leading to its use in North America, ”Construction and Building Materials, Vol.7, No.3, p.145-148(1993).
    35. Katayama,T.,“Petrography of Alkali-Aggregate Reactions in Concrete Reactive Minerals and Reaction Products,”East Asia Alkali-Aggregate Reaction Seminar,Tottori,Janpan,(1997).
    36. Lane, D. S.,“ Comparison of Results from C 441 and C 1293 with Implications for Establishing Criteria for ASR-Resistant Concrete, ”Cement, Concrete, and Aggregates, Vol.21, No.2, p.149-156(1999).
    37. Oberholster, R. E. and Davies, G.,“ An Accelerated Method for Testing the Potential Alkali Reactivity of Siliceous Aggregates,”Cement and Concrete Research, Vol.16, No.2, p.181-189(1986).
    38. Rogers, C. A. and Hooton,R. D.,“Reduction in Mortar and Concrete Expansion with Reactive Aggregate Due to Alkali Leaching,”Cement, Concrete, and Aggregates,Vol.13, p.p42-49(1991).
    39. Shayan, A.,“ Prediction of Alkali Reactivity Potential of Some Australian Aggregate and Correlation with Service Performance, ”Materials Journal, Vol.89, No.1, p.13-23(1992).
    40. Stanton,T.E.,“The Expansion of Concrete Through Reaction between Cemnet and Concrete,”Proc. American Soc. Civil Engineers,Vol.66, pp.1781-1811(1940).
    41. Thomas, M. D. A., Hooton, R. D., and Rogers, C. A.,“ Prevention of Damage Due to Alkali-Aggregate Reaction(AAR)in Concrete Construction-Canadian Approach, ”Cement, Concrete, and Aggregates, Vol.19, No.1, p.26-30(1997).
    42. Tong,L. and Tang,M.,“Expandability of Solid-Volume-Reducing Reaction of Alkali-Magnesite and Alkali-Dolomite,”Cement, Concrete,and Aggregates,Vol.19,No.1,pp.26-30(1997).
    43. Wigum, B. J. and French, W. J.,“ Sequential examination of slowly expanding alkali-reaction aggregates in accelerated mortar bar testing,” Magazine of Concrete Research, Vol.48, No.177, p.281-292(1996).
    44. Yen T., B. L. Chu, C. K. Lu ,“Alkali-Aggregate Reactivity In Western Taiwan, ”Proceeding 10th International Conference on Alkali-Aggregate Reaction in Concrete, Australia, pp.166-173(1996).
    45. http://www.acres.com/aar/index.html , ACRES(2002).

    QR CODE
    :::