跳到主要內容

簡易檢索 / 詳目顯示

研究生: 張竣睿
Jyun-Ruei Jhang
論文名稱: 高多樣性廣義相差空間調變之設計
Designs of High-Diversity Generalized Differential Spatial Modulation
指導教授: 魏瑞益
Ruey-Yi Wei
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 通訊工程學系
Department of Communication Engineering
論文出版年: 2022
畢業學年度: 111
語文別: 英文
論文頁數: 64
中文關鍵詞: 廣義相差空間調變複數天線矩陣
外文關鍵詞: GDSM
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文,我們提出兩種方法來增加廣義相差空間調變的多樣性。第一種是使用4×4空時區塊碼的廣義相差空間調變,第二種方法是將區塊編碼調變結合廣義相差空間調變和使用複數天線矩陣。為了使廣義相差空間調變有更高的傳送速率,我們將交錯樣式加入廣義相差空間調變,研究和設計符合傳送多樣性為4的交錯樣式。最後我們比較這兩種方法,使用第二種方法的傳送速率會高於第一種方法,而第二種方法的錯誤率也優於第一種方法。


    In this thesis, we propose two schemes to increase the transmit diversity of generalized differential spatial modulation(GDSM). In the first scheme, a 4×4 space-time block code is used in GDSM. In the second schemes, block code modulation is concatenated with GDSM. To increase the transmission rate of GDSM, symbol interleaving is used. We design interleaving patterns of transmit diversity four. Finally, we compare these two schemes, and find that the transmission rate and the error rate of the second scheme are higher than those of the first one.

    摘要 IV Abstract V 致謝 VI 目錄 VII 圖目錄 IX 表目錄 XI 第一章 緒論 1 1.1 背景與研究動機 1 第二章 相關背景回顧 3 2.1 相差空間調變 3 2.2區塊編碼之相差空間調變 6 2.3空時區塊碼 9 2.4 使用符元交錯的廣義相差空間調變 10 2.4.1 傳送端 10 2.4.2 交錯樣式 12 2.4.3 接收端 16 2.5 傳送多樣性為四的廣義相差空間調變 18 2.5.1使用符元交錯的廣義相差空間調變 18 2.5.2 區塊編碼之廣義相差空間調變 21 第三章 使用4×4空時區塊碼及內部和外部交錯樣式 24 3.1 不同天線數的交錯樣式 24 3.2 模擬結果 31 第四章 使用區塊編碼調變及傳送多樣性為四之交錯樣式 37 4.1不同天線數的交錯樣式 37 4.2 模擬結果 41 4.3 第三章與第四章錯誤率模擬比較 46 第五章 結論 50 參考文獻 51

    [1] R. Mesleh, H. Haas, S. Sinanovic, C. Ahn, and S. Yun, “Spatial modulation,” IEEE Trans. Veh. Technol., vol. 57, no. 4, pp. 2228–2242, Jul. 2008.
    [2] J. Jeganathan, A. Ghrayeb, and L. Szczecinski, “Spatial modulation: Optimal detection and performance analysis,” IEEE Commun. Lett., vol. 12,no. 8, pp. 545–547, Aug. 2008.
    [3] J. Jeganathan, A. Ghrayeb, L. Szczecinski, and A. Ceron, “Space shift keying modulation for MIMO channels,” IEEE Trans. Wireless Commun.,vol. 8, no. 7, pp. 3692–3703, Jul. 2009.
    [4] M. Renzo, H. Haas, and P. Grant, “Spatial modulation for multiple-antenna wireless systems: A survey,” IEEE Commun. Mag., vol. 49,no. 12, pp. 182–191, Dec. 2011.
    [5] S. Sugiura, S. Chen, and L. Hanzo, “A universal space-time architecture for multiple-antenna aided systems,” IEEE Commun. Surveys & Tutorials,vol. 14, no. 2, pp. 401–420, May 2012.
    [6] P. Yang, M. D. Renzo, Y. Xiao, S. Li and L. Hanzo, “Design guidelines for spatial modulation,” IEEE Commun. Surveys & Tutorials, vol. 17, no. 1, pp. 6-26, First Quarter 2015.
    [7] Y. Bian, X. Cheng, M. Wen, L. Yang, H. V. Poor, and B. Jiao,“Differential spatial modulation,” IEEE Trans. Veh. Technol., vol. 64,no. 7, pp. 3262-3268, Jul. 2015.
    [8] N. Ishikawa and S. Sugiura, “Unified differential spatial modulation,”IEEE Wireless Commun. Lett., vol. 3, no. 4, pp. 337-340, Aug. 2014.
    [9] A. G. Helmy, M. D. Renzo, and N. Al-Dhahir, “Differential spatially modulated space-time block codes with temporal permutations,” IEEE Trans. Veh. Technol., vol. 66, no. 8, pp. 7548-7552, Aug. 2017.
    [10] L. Xiao, Y. Xiao, P. Yang, J. Jiu, S. Li, and W. Xiang, “Space-time block coded differential spatial modulation,” IEEE Trans. Veh. Technol., vol. 66, no. 10,pp. 8821-8834, Oct. 2017.
    [11] S. M. Alamouti, “A simple transmitter diversity scheme for wireless communications,” IEEE J. Select. Areas Commun., vol. 16, pp. 1451-1458, Oct. 1998.
    [12] B. L. Hughes, “Differential space-time modulation,” IEEE Trans. Inform.Theory, vol. 46, pp. 2567-2578, no. 7, Nov. 2000.
    [13] R. Rajashekar, N. Ishikawa, S. Sugiura, K. V. S. Hari, and L. Hanzo, “Full-diversity dispersion matrices from algebraic field extensions for differential spatial modulation," IEEE Trans. Veh. Technol., vol. 66, no. 1, pp. 385-394, Jan. 2017.
    [14] B. M. Hochwald and W. Swelden, “Differential unitary space-time modulation,” IEEE Trans. Commun., vol. 48, pp. 2041-2052, Dec. 2000.
    [15] R. Y. Wei and T. Y. Lin, “Low-complexity differential spatial modulation,”IEEE Wireless Commun. Lett., vol. 8, no. 2, pp. 356-359, Apr.2019.
    [16] S. Sayegh, “A class of optimum block codes in signal space,” IEEE Trans. Commun., vol. 30, pp. 1043-1045, Oct. 1986.
    [17] T. Kasami, T. Takata, T. Fujiwara and S. Lin, “On multilevel block modulation codes,” IEEE Trans. Inform. Theory, vol. 37, pp. 965-975, July 1991.
    [18] R. Y. Wei, Y. W. Tsai and S. L. Chen, “Improved schemes of differential spatial modulation,” IEEE Access, vol. 9, pp. 97120-97128, July. 2021.
    [19] 崔皓宇, “傳送多樣為四的廣義相差空間調變” 國立中央大學通訊工程研究所,碩士論文, 六月. 2021.
    [20] R. Y. Wei, S. L. Chen, Y. H. Lin, and B. C. Chen, “Bandwidth-efficient generalized differential spatial modulation,’’ IEEE Transactions on Vehicular Techonlogy, Early Access, 2022.
    [21] A. G. Helmy, M. D. Renzo, and N. Al-Dhahir, “Differential spatially modulated space-time block codes with temporal permutations,” IEEE Trans. Veh. Technol., vol. 66, no. 8, pp. 7548-7552, Aug. 2017.

    QR CODE
    :::