| 研究生: |
廖奕誠 Yi-Cheng Liao |
|---|---|
| 論文名稱: |
熱處理對Ti-6Al-4V真空硬銲件微觀結構及機械性質之影響 |
| 指導教授: |
黃俊仁
Jiun-Ren Hwang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 鈦合金 、Ti-6Al-4V 、真空硬銲 、銲後熱處理 、Ti-15Cu-15Ni |
| 外文關鍵詞: | Titanium Alloy, Ti-6Al-4V, Vacuum Brazing, Post Weld Heat Treatment, Ti-15Cu-15Ni |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究採用Ti-6Al-4V鈦合金為實驗材料,以對接銲接方式進行真空硬銲,其中利用鈦基填料Ti-15Cu-15Ni做為填充金屬。母材Ti-6Al-4V經過真空硬銲後導致機械性質下降,為了改善母材機械性質,常利用固溶時效熱處理,提升母材強度,因此本研究將探討真空硬銲後進行固溶及時效熱處理,探討銲後經不同條件之固溶及時效熱處理對於銲道與母材微觀結構及機械性質的影響。
研究結果顯示,母材於銲後因產生費德曼組織導致強度下降。銲後經固溶960℃ x 60 min與時效482℃ x 2 hr可消除母材之費德曼組織,並析出強化相,獲得最佳抗拉強度;銲道則因介金屬化合物微細化,獲得優異之接合強度。銲後採用高溫時效(固溶960℃ x 20 min及時效704℃ x 2 hr),母材會產生過時效軟化,銲道經過長時間高溫時效後介金屬化合物粗大化,導致銲道接合強度下降,但因晶粒粗大化而改善韌性,並獲得較高衝擊能。
In this study, Ti-6Al-4V titanium alloy was the experimental material, Ti-15Cu-15Ni was the filler metal, and butt welding was performed by vacuum brazing. The mechanical properties of the base metal Ti-6Al-4V was reduced after vacuum brazing. In order to improve the mechanical properties of the base material. The post weld heat treatment was adopted to improve the microstructures and mechanical properties of weld bead and base metal.
The results showed that the strength of the base metal was reduced due to the Widmanstatten structure after vacuum brazing. The best tensile strength of the weldment was obtained by solution at 960℃ x 60 min and aging at 482℃ x 2 hr. After the above post weld heat treatment process, the Widmanstatten structure of base metal was eliminated and the strengthened phase precipitated. Also, the weld bead was refined by the intermetallic compound, and resulted in excellent bonding strength. If the aging temperature was too high (solution at 960℃ x 20 min and aging at 704℃ x 2 hr), the base metal was over-aged and softened. The coarsened intermetallic compound in the weld bead led to decreasing in the strength and increasing in the impact energy.
[1] 曾婉如,"鈦金屬市場現況與應用商機",中工高雄會刊,第21卷,第1 期。
[2] X. Huang, N. L. Richards, "Activated diffusion brazing technology for manufacture of titanium honeycomb structures - A statistical study," Welding Research, No. 3, pp. 73-81, 2004.
[3] J. R. Woodward, "Titanium honeycomb sandwich fabrication process," Proceedings of Fifth National SAMPLE Technical Conference. New York, pp. 432-437, 1973.
[4] 李國勳,"鈦合金Ti-6Al-4V及真空硬銲後固溶時效熱處理的研究",博士論文,國立臺灣大學工學院機械工程學系,2019。
[5] C.R. Brooks, "Nonferrous Alloys," American Society for Metals, 1984.
[6] 朱建平、陳瑾惠、簡嘉毅,"鈦-鉬合金熱處理後拉伸疲勞性質研究",碩士論文,國立成功大學材料科學及工程學系,2005。
[7] 賴耿陽,"金屬鈦(理論與應用)",台南:復漢出版社,50-56頁,2000。
[8] 陸美源,"Ti-6Al-4V與Ti-15V-3Cr-3Al-3Sn 銲件之高溫缺口拉伸性質研究",碩士論文,國立台灣海洋大學材料工程研究所,2011。
[9] 洪胤庭,"純鈦及鈦合金特性及製程介紹",中工高雄會刊,第21卷,第1期,16-18頁,2013。
[10] 盧信璋,"銲後熱處理對時效鈦合金EBW銲件之顯微組織與機械性質影響",碩士論文,國立交通大學工學院精密與自動化工程學程,2012。
[11] 李勝隆,"熱處理-金屬材料原理與應用",全華圖書股份有限公司,2017。
[12] 莊智翔,"熱處理及冷卻速率對Ti-6Al-4V合金板材經電子束銲接機械性能與抗蝕性能之影響",碩士論文,國防大學理工學院兵器系統工程碩士班,2012。
[13] J. R. Wood, and P. A. Russo, "Heat Treatment of Titanium Alloys," Advances in the Science and Technology of Titanium Alloy Processing, pp. 227- 229, 1997.
[14] 屈政遠,"高強度鈦合金異種金屬銲接之研究",碩士論文,台灣海洋大學材料工程研究所,2010。
[15] 李俊賢,"銲後熱處理對Ti-6Al-6V-2Sn 雷射銲件機械性質之影響",碩士論文,台灣海洋大學材料工程研究所,2008。
[16] 謝政達,"高強度鈦合金之循環負載與雷射銲件性質研究",碩士論文,台灣海洋大學材料工程研究所,2013。
[17] H. E. Emre, "Effect of laser welding on microstructure and mechanical properties of biomedical Ti6Al4V," Applied Physics, pp. 1-12, 2019.
[18] G. Yan, "Improving the mechanical properties of TIG welding Ti-6Al-4V by post weld heat treatment," Applied Physics, pp. 1-12, 2017.
[19] S. Wang, "Investigation on the microstructure and mechanical properties of Ti–6Al–4V alloy joints with electron beam welding," Materials and Design, Vol. 36, pp. 663-670, 2012.
[20] T. S. Balasubramanian, "Influence of welding processes on microstructure, tensile and impact properties of Ti-6Al-4V alloy joints," Transactions of Nonferrous Metals Society of China, Vol. 21, pp. 1253-1262, 2011.
[21] 張清桐,"Ti-6Al-4V硬銲之研究",博士論文,國立東華大學材料科學與工程學系,2006。
[22] 葉子暘,"使用鈦基填料真空硬銲鈦合金之研究",博士論文,國立臺灣大學工學院材料科學與工程學研究所,2013。
[23] C.T. Chang, "Infrared brazing Ti–6Al–4V and Mo using the Ti-15Cu-15Ni braze alloy," International Journal of Refractory Metals and Hard Materials, Vol. 23, No. 3, pp. 161-170, 2005
[24] S. Liu, "Interfacial microstructure and shear strength of TC4 alloy joints vacuum brazed with Ti–Zr–Ni–Cu filler metal," Materials Science and Engineering A, Vol. 775, 2020.
[25] I.T. Hong, "The study of vacuum-furnace brazing of C103 and Ti–6Al–4V using Ti–15Cu–15Ni foil," Materials Chemistry and Physics, Vol. 94, pp. 131-140, 2005.
[26] 王誠佑,"利用BAg-8填料紅外線硬銲接合Ti-6Al-4V與17-4PH之研究",碩士論文,國立臺灣大學工學院材料科學與工程學研究所,2004。
[27] J. Cao, "Processing, microstructure and mechanical properties of vacuum-brazed Al2O3/Ti6Al4V joints," Materials Science and Engineering A, Vol. 535, pp. 62-67, 2012.
[28] "Standard Specification for Titanium and Titanium Alloy Strip, Sheet, and Plate," ASTM B265, American Society for Testing and Materials, United States of America, 2015.
[29] 羅志明,"Ti-6Al-4V鈦合金電子束銲件之疲勞裂縫成長研究",碩士論文,國立中央大學機械工程學系,2018。
[30] 黃俊仁,"科技部107年度研究計畫期末報告: 真空硬銲鈦合金製程最佳化及疲勞性質研究",2019。
[31] "AMS-H-81200, Heat Treatment of Titanium and Titanium Alloys," SAE Aerospace Material Specification, SAE International, Warrendale, PA, 2003.
[32] "AMS-2801B, Heat Treatment of Titanium Alloy Parts, SAE Aerospace Material Specification," SAE International, Warrendale, PA, 2003.
[33] "Heat treatment, Metals Handbook," 9th ed. Vol. 4, AMS Handbook Committee, pp. 763-774, 1981.
[34] "Standard Test Methods for Tension Testing of Metallic Materials," ASTM E8, American Society for Testing and Materials, United States of America, 2012.
[35] "Standard Test Methods for Notched Bar Impact Testing of Metallic Materials," ASTM E23, American Society for Testing and Materials, United States of America, 2018.
[36] "Standard Practice for Microetching Metals and Alloys," ASTM E407, American Society for Testing and Materials, United States of America, 2012.
[37] "Titanium Ti-6Al-4V (Grade 5), Annealed," asm.matweb.com. ASM Aerospace Specification Metals, Inc, 2017.