跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林宜瑾
Yi-chin Lin
論文名稱: 載子遮蔽效應與壓電效應對氮化鎵發光二極體之光性影響研究
Carrier screening and piezoelectric effects on optical performance of GaN-based LED
指導教授: 劉正毓
Cheng-yi Liu
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 82
中文關鍵詞: 發光二極體氮化鎵壓電場載子遮蔽電場熱膨脹係數
外文關鍵詞: Light emitting diode, GaN, piezoelectric field, carrier screening field, CTE mismatch
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 發光二極體中的氮化鎵晶體具有壓電特性,產生之壓電場會使得主動層(多重量子井)之能階傾斜,此現象稱為量子侷限史塔克效應。能階傾斜造成載子侷限能力變差、載子在空間上分離(造成複合效率下降)。而載子空間分離會產生一載子遮蔽電場,其電場方向與壓電場相反,故可以減緩量子井之能階傾斜。本研究為探討壓電場與載子遮蔽電場之間的關係,及其對於發光二極體之光性的影響。藉由調變固晶製程之固晶溫度,我們發現高溫固晶可以釋放愈多氮化鎵磊晶薄膜中的壓應力,由這個發現,我們可以改變氮化鎵磊晶薄膜中的殘留壓應力,進而研究壓電場(由殘留應力造成)與載子遮蔽電場之間的關係。本論文首先提出:氮化鎵磊晶薄膜與藍寶石基板之間的熱膨脹係數不匹配造成之壓電場主導著氮化銦鎵多重量子井的能階傾斜。然而,減少熱膨脹係數造成之壓電場強度對發光二極體之光性並無太大的影響。這是因為載子遮蔽電場會抵消掉壓電場,而且我們認知到載子遮蔽電場的強度與壓電場造成之能階傾斜程度以及載子濃度有關。故進一步發展出載子遮蔽電場為熱膨脹係數造成之壓電場與外加電場的函數,之間的關係可表示為: 。本研究之兩個重大結論為:(1)熱膨脹係數造成之壓電場主導多重量子井的能階傾斜;(2)載子遮蔽電場是所有內部電場中影響發光二極體之發光特性最嚴重。


    GaN crystal has the piezoelectric characteristic, the producing piezoelectric field would cause the energy level tilting in the InGaN MQWs, which is named as quantum-confinement Stark effect. Energy level tilting causes some disadvantages, i.e., the carrier confinement ability decay, the carrier spatial separation (reducing carrier recombination). The carrier spatial separation also causes a carrier screening effect with a direction opposite to the piezoelectric field, which could ease the quantum-confinement Stark effect. To explore the relationship between the piezoelectric field and the carrier screening effect, and their effects on the optical performance of the GaN-based LEDs. We adjust the process temperature of the die-attachment process, to vary the residual compressive stress in the GaN epilayer. We note that the higher temperature of the die-attachment process, the more compressive stress of the GaN LEDs can be released. By this concept, the residual compressive stress in the GaN epilayer could be controlled. In this Ph. D. study, we first propose that the CTE mismatch (between the GaN epilayer and the sapphire substrate) causes a CTE-induced piezoelectric field, which dominates the energy levels distortion in the InGaN MQWs of the GaN-based LEDs. However, the decreasing in the CTE-induced piezoelectric field does not have a significant effect on the optical performance of the GaN-based LEDs. One of the major reasons could be that the carrier screening effect could compensate the CTE-induced piezoelectric field. And, we realize that the magnitude of the carrier screening field depends on the piezoelectric field induced energy level tilting and the carrier concentration. Thus, the carrier screening field is a function of the CTE-induced piezoelectric field and applied electric field, which can be described as . Two major conclusions are: (1) the CTE-induced piezoelectric field dominates the initial energy level tilting in the InGaN MQWs; (2) the carrier screening effect is the major internal electric fields that influences the optical property of the GaN-based LEDs.

    Table of Contents 中文摘要 I Abstract II Table of Contents IV List of Figures VI Chapter 1 Introduction 1 1.1 Introduction of GaN-based compounds 1 1.2 Introduction of GaN-based LEDs 4 1.3 Mechanism of carrier recombination 7 1.4 Introduction of initial electrical field in GaN-based LEDs 9 1.5 Introduction of the carrier screening effect 14 Chapter 2 Motivation 16 Chapter 3 Decouple the residual stresses induced by lattice mismatch and CTE mismatch in GaN-based LED 18 3.1 Influence factors on the stress behavior of the GaN epilayer 18 3.1-1 Experimental procedures 18 3.1-2 Methodology of biaxial stress analysis in GaN 18 3.1-3 Stress evolution of GaN epilayer from room temperature to epitaxial temperature 19 3.1-4 Comparison of measured and theoretic stress values 21 3.2 Threading dislocations formation to relieve the LM-induced stress 26 3.2-1 Experimental procedures 26 3.2-2 Stress relaxation by forming threading dislocations 26 3.3 Relation between dislocation density and residual stress in GaN 29 3.4 Summary 30 Chapter 4 CTE-induced piezoelectric field in GaN epilayer of GaN-based LEDs 31 4.1 Determine the value of piezoelectric field in MQWs 31 4.1-1 Direct piezoelectric effect 31 4.1-2 Flat-band condition 32 4.2 Effect of CTE-induced piezoelectric field on the distortion of energy levels in MQWs 35 4.2-1 Experimental procedures 35 4.2-2 Stress levels of the GaN-based LEDs varing with LED die-attachment process 36 4.2-3 Influence factors on the energy levels distortion in InGaN MQWs. 37 4.3 CTE-induced piezoelectric effect on L-I-V curves of the GaN LEDs. 42 4.4 Summary 44 Chapter 5 Carrier screening effect dominates the optical properties of GaN-based LEDs. 45 5.1 Influence factors of carrier screening effect. 45 5.1-1 Net electric field in InGaN MQWs 45 5-1-2 Carrier screening field in InGaN MQWs 46 5.2 Verification the effect of carrier screening field by simulated band diagram. 52 5.3 Carrier screening effect is a function of CTE-induced piezoelectric field and applied electric field. 59 5.4 Summary 61 Chapter 6 Conclusions 62 References 64

    [1] M. Meneghini, A. Tazzoli, G. Mura, G. Meneghesso, and E. Zanoni, "A review on the physical mechanisms that limit the reliability of GaN-based LEDs," Electron Devices, IEEE Transactions on, vol. 57, pp. 108-118, 2010.
    [2] P. Raisch, R. Winterhoff, W. Wagner, M. Kessler, H. Schweizer, T. Riedl, et al., "Investigations on the performance of multiquantum barriers in short wavelength (630 nm) AlGaInP laser diodes," Applied Physics Letters, vol. 74, p. 2158, 1999.
    [3] U. K. Mishra, P. Parikh, and Y.-F. Wu, "AlGaN/GaN HEMTs-an overview of device operation and applications," PROCEEDINGS-IEEE, vol. 90, pp. 1022-1031, 2002.
    [4] D. N. Quang, N. H. Tung, V. N. Tuoc, N. V. Minh, and P. N. Phong, "Roughness-induced piezoelectric charges in wurtzite group-III-nitride heterostructures," Physical Review B, p. 115337, vol. 72, 2005.
    [5] M. Posternak, A. Baldereschi, A. Catellani, and R. Resta, "Ab initiostudy of the spontaneous polarization of pyroelectric BeO," Physical Review Letters, vol. 64, pp. 1777-1780, 1990.
    [6] S. Yoshida, S. Misawa, and A. Itoh, "Epitaxial growth of aluminum nitride films on sapphire by reactive evaporation," Applied Physics Letters, vol. 26, pp. 461-462, 1975.
    [7] E. Yu, X. Dang, P. Asbeck, S. Lau, and G. Sullivan, "Spontaneous and piezoelectric polarization effects in III–V nitride heterostructures," Journal of Vacuum Science & Technology B, vol. 17, pp. 1742-1749, 1999.
    [8] F. Bernardini, V. Fiorentini, and D. Vanderbilt, "Spontaneous polarization and piezoelectric constants of III-V nitrides," Physical Review B, vol. 56, p. R10024, 1997.
    [9] T. Kuykendall, P. Pauzauskie, S. Lee, Y. Zhang, J. Goldberger, and P. Yang, "Metalorganic chemical vapor deposition route to GaN nanowires with triangular cross sections," Nano Letters, vol. 3, pp. 1063-1066, 2003.
    [10] N. Ahmed, M. Hashim, and Z. Hassan, "Effects of Si, Al2O3 and SiC substrates on the characteristics of DBRs structure for GaN based laser," Journal of Physical Science, vol. 17, pp. 151-159, 2006.
    [11] S. Kukushkin, A. Osipov, V. Bessolov, B. Medvedev, V. Nevolin, and K. Tcarik, "Substrates for epitaxy of gallium nitride: new materials and techniques," Rev. Adv. Mater. Sci, vol. 17, pp. 1-32, 2008.
    [12] W. Qian, M. Skowronski, and G. S. Rohrer, "Structural defects and their relationship to nucleation of GaN thin films," Mat. Res. Soc. Symp. Proc., vol. 423, p. 475, 1996.
    [13] L. Liu and J. H. Edgar, "Substrates for gallium nitride epitaxy," Materials Science and Engineering: R: Reports, vol. 37, pp. 61-127, 2002.
    [14] O. Ambacher, "Growth and applications of group III-nitrides," Journal of Physics D: Applied Physics, vol. 31, p. 2653, 1998.
    [15] M. A. Moram, M. J. Kappers, F. Massabuau, R. A. Oliver, and C. J. Humphreys, "The effects of Si doping on dislocation movement and tensile stress in GaN films," Journal of Applied Physics, vol. 109, p. 073509, 2011.
    [16] H. Sato, T. Sugahara, Y. Naoi, and S. Sakai, "Compositional inhomogeneity of InGaN grown on sapphire and bulk GaN substrates by metalorganic chemical vapor deposition," Japanese journal of applied physics, vol. 37, p. 2013, 1998.
    [17] O. Ambacher, J. Majewski, C. Miskys, A. Link, M. Hermann, M. Eickhoff, et al., "Pyroelectric properties of Al (In) GaN/GaN hetero-and quantum well structures," Journal of physics: condensed matter, vol. 14, p. 3399, 2002.
    [18] J.-H. Ryou, P. D. Yoder, J. Liu, Z. Lochner, H. Kim, S. Choi, et al., "Control of quantum-confined stark effect in InGaN-based quantum wells," Selected Topics in Quantum Electronics, IEEE Journal of, vol. 15, pp. 1080-1091, 2009.
    [19] X. Li, X. Ni, J. Lee, M. Wu, U. Özgür, H. Morkoç, et al., "Efficiency retention at high current injection levels in m-plane InGaN light emitting diodes," Applied Physics Letters, vol. 95, p. 121107, 2009.
    [20] E. F. Schubert, "Light-Emitting Diodes," Light-Emitting Diodes-2nd Edition, by E. Fred Schubert, pp. 432. Cambridge University Press, June 2006. ISBN-10: 0521865387. ISBN-13: 9780521865388. LCCN: TK7871. 89. L53. S47 2006, vol. 1, 2006.
    [21] U. Lafont, H. v. Zeijl, and S. v. d. Zwaag, "Increasing the reliability of solid state lighting systems via self-healing approaches: A review," Microelectronics Reliability, vol. 52, pp. 71-89, 2012.
    [22] M. Arik, J. Petroski, and S. Weaver, "Thermal challenges in the future generation solid state lighting applications: light emitting diodes," in Thermal and Thermomechanical Phenomena in Electronic Systems, 2002. ITHERM 2002. The Eighth Intersociety Conference on, 2002, pp. 113-120.
    [23] S. Choi, H. J. Kim, S.-S. Kim, J. Liu, J. Kim, J.-H. Ryou, et al., "Improvement of peak quantum efficiency and efficiency droop in III-nitride visible light-emitting diodes with an InAlN electron-blocking layer," Applied Physics Letters, vol. 96, p. 221105, 2010.
    [24] R.-H. Horng, C. Chiang, H. Hsiao, X. Zheng, D. Wuu, and H. Lin, "Improved thermal management of GaN/sapphire light-emitting diodes embedded in reflective heat spreaders," Applied Physics Letters, vol. 93, p. 111907, 2008.
    [25] D. S. Meyaard, Q. Shan, Q. Dai, J. Cho, E. F. Schubert, M.-H. Kim, et al., "On the temperature dependence of electron leakage from the active region of GaInN/GaN light-emitting diodes," Applied Physics Letters, vol. 99, p. 041112, 2011.
    [26] Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, "Auger recombination in InGaN measured by photoluminescence," Applied Physics Letters, vol. 91, p. 141101, 2007.
    [27] M. Zhang, P. Bhattacharya, J. Singh, and J. Hinckley, "Direct measurement of auger recombination in In[sub 0.1]Ga[sub 0.9]N/GaN quantum wells and its impact on the efficiency of In[sub 0.1]Ga[sub 0.9]N/GaN multiple quantum well light emitting diodes," Applied Physics Letters, vol. 95, p. 201108, 2009.
    [28] A. Laubsch, M. Sabathil, M. Strassburg, W. Bergbauer, M. Peter, H. Lugauer, et al., "Improving the high-current efficiency of LEDs," ed, 2009.
    [29] I. H. Brown, I. A. Pope, P. M. Smowton, P. Blood, J. D. Thomson, W. W. Chow, et al., "Determination of the piezoelectric field in InGaN quantum wells," Applied Physics Letters, vol. 86, p. 131108, 2005.
    [30] L. Hsu and W. Walukiewicz, "Modeling of InGaN/Si tandem solar cells," Journal of Applied Physics, vol. 104, p. 024507, 2008.
    [31] E. Hellman, "The polarity of GaN: a critical review," MRS Internet Journal of Nitride Semiconductor Research, vol. 3, p. e11, 1998.
    [32] C. Wood and D. Jena, Polarization effects in semiconductors: from ab initio theory to device applications: Springer Science & Business Media, 2007.
    [33] T. Kozawa, T. Kachi, H. Kano, H. Nagase, N. Koide, and K. Manabe, "Thermal stress in GaN epitaxial layers grown on sapphire substrates," Journal of applied physics, vol. 77, pp. 4389-4392, 1995.
    [34] Y. C. Lin, Y. S. Liu, C. L. Chang, and C. Y. Liu, "Warpage and stress relaxation of the transferred GaN LED epi-layer on electroplated Cu substrates," Electronic Materials Letters, vol. 9, pp. 441-444, 2013.
    [35] R. Singh, D. Doppalapudi, T. D. Moustakas, and L. T. Romano, "Phase separation in InGaN thick films and formation of InGaN/GaN double heterostructures in the entire alloy composition," Applied Physics Letters, vol. 70, p. 1089, 1997.
    [36] A. Walsh and S.-H. Wei, "Theoretical study of stability and electronic structure of Li(Mg,Zn)N alloys: A candidate for solid state lighting," Physical Review B, vol. 76, 2007.
    [37] A. Zoroddu, F. Bernardini, P. Ruggerone, and V. Fiorentini, "First-principles prediction of structure, energetics, formation enthalpy, elastic constants, polarization, and piezoelectric constants of AlN, GaN, and InN: Comparison of local and gradient-corrected density-functional theory," Physical Review B, vol. 64, 2001.
    [38] C. Deger, E. Born, H. Angerer, O. Ambacher, M. Stutzmann, J. Hornsteiner, et al., "Sound velocity of AlxGa1-xN thin films obtained by surface acoustic-wave measurements," Applied physics letters, vol. 72, p. 2400, 1998.
    [39] B. Gao, H. Liu, Q. Kuang, W. Zhou, and L. Cao, "A novel model of photo-carrier screening effect on the GaN-based p-i-n ultraviolet detector," Science China Physics, Mechanics and Astronomy, vol. 53, pp. 793-801, 2010.
    [40] P. Lefebvre, A. Morel, M. Gallart, T. Taliercio, J. Allègre, B. Gil, et al., "High internal electric field in a graded-width InGaN/GaN quantum well: Accurate determination by time-resolved photoluminescence spectroscopy," Applied Physics Letters, vol. 78, p. 1252, 2001.
    [41] Y. D. Jho, J. S. Yahng, E. Oh, and D. S. Kim, "Measurement of piezoelectric field and tunneling times in strongly biased InGaN/GaN quantum wells," Applied Physics Letters, vol. 79, p. 1130, 2001.
    [42] C.-F. Lin, K.-T. Chen, W.-P. Tseng, B.-C. Shieh, and C.-H. Hsieh, "Reducing a Piezoelectric Field in InGaN Active Layers by Varying Pattern Sapphire Substrates," Electron Devices, IEEE Transactions on, vol. 60, pp. 4180-4184, 2013.
    [43] T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H. Amano, et al., "Quantum-confined Stark effect due to piezoelectric fields in GaInN strained quantum wells," Japanese Journal of Applied Physics, vol. 36, p. L382, 1997.
    [44] Y. M. Park, J. K. Son, H. J. Chung, C. Sone, and Y. Park, "InGaN multiquantum well structure with a reduced internal electric field and carrier decay process by tunneling," Applied Physics Letters, vol. 95, p. 231917, 2009.
    [45] T. Takeuchi, C. Wetzel, S. Yamaguchi, H. Sakai, H. Amano, I. Akasaki, et al., "Determination of piezoelectric fields in strained GaInN quantum wells using the quantum-confined Stark effect," Applied Physics Letters, vol. 73, p. 1691, 1998.
    [46] H. Morkoç, S.-K. Zhang, W. Wang, R. R. Alfano, A. M. Dabiran, A. M. Wowchak, et al., "Carrier screening effect in AlGaN quantum-well avalanche photodiode," vol. 7216, pp. 72162G-72162G-5, 2009.
    [47] Y. C. Lin, W. C. Liu, C. L. Chang, C. C. Chung, Y. H. Chen, and C. Y. Liu, "Internal Quantum Efficiency Enhancement by Relieving Compressive Stress of GaN-Based LED," Photonics Technology Letters, IEEE, vol. 26, pp. 1793-1796, 2014.
    [48] P. G. Klemens, "Anharmonic Decay of Optical Phonons," Physical Review, vol. 148, pp. 845-848, 1966.
    [49] F. Demangeot, J. Frandon, M. Renucci, O. Briot, B. Gil, and R.-L. Aulombard, "Raman determination of the phonon deformation potentials in α-GaN," MRS Internet Journal of Nitride Semiconductor Research, vol. 1, p. e23, 1996.
    [50] A. G. Kontos, Y. S. Raptis, N. T. Pelekanos, A. Georgakilas, E. Bellet-Amalric, and D. Jalabert, "Micro-Raman characterization of InxGa1−xN/GaN/Al2O3 heterostructures," Physical Review B, vol. 72, p. 155336, 2005.
    [51] A. F. Wright, "Elastic properties of zinc-blende and wurtzite AlN, GaN, and InN," Journal of Applied Physics, vol. 82, p. 2833, 1997.
    [52] M. Moram, Z. Barber, and C. Humphreys, "Accurate experimental determination of the Poisson’s ratio of GaN using high-resolution x-ray diffraction," Journal of applied physics, vol. 102, p. 023505, 2007.
    [53] M. Giehler, M. Ramsteiner, P. Waltereit, O. Brandt, K. H. Ploog, and H. Obloh, "Influence of heteroepitaxy on the width and frequency of the E[sub 2] (high)-phonon line in GaN studied by Raman spectroscopy," Journal of Applied Physics, vol. 89, p. 3634, 2001.
    [54] M. A. Moram, C. S. Ghedia, D. V. S. Rao, J. S. Barnard, Y. Zhang, M. J. Kappers, et al., "On the origin of threading dislocations in GaN films," Journal of Applied Physics, vol. 106, p. 073513, 2009.
    [55] M. A. Moram, M. J. Kappers, F. Massabuau, R. A. Oliver, and C. J. Humphreys, "The effects of Si doping on dislocation movement and tensile stress in GaN films," Journal of Applied Physics, vol. 109, p. 073509, 2011.
    [56] I. Ahmad, "Dependence of the stress–temperature coefficient on dislocation density in epitaxial GaN grown on α-Al[sub 2]O[sub 3] and 6H–SiC substrates," Journal of Applied Physics, vol. 95, p. 1692, 2004.
    [57] A. Bonfiglio, M. Lomascolo, G. Traetta, R. Cingolani, A. Di Carlo, F. Della Sala, et al., "Well-width dependence of the ground level emission of GaN/AlGaN quantum wells," Journal of Applied Physics, vol. 87, p. 2289, 2000.
    [58] J. Li, S. Li, and J. Kang, "Quantized level transitions and modification in InGaN∕GaN multiple quantum wells," Applied Physics Letters, vol. 92, p. 101929, 2008.
    [59] K. S. Ramaiah, Y. K. Su, S. J. Chang, C. H. Chen, F. S. Juang, H. P. Liu, et al., "Studies of InGaN∕GaN multiquantum-well green-light-emitting diodes grown by metalorganic chemical vapor deposition," Applied Physics Letters, vol. 85, p. 401, 2004.

    QR CODE
    :::