| 研究生: |
張朝閔 Chao-Min Chang |
|---|---|
| 論文名稱: |
高增益低導通電壓銻砷化銦鎵異質接面雙極性電晶體之研製 Growth and characterization of InGaAsSb base DHBT with high current gain and low turn-on voltage |
| 指導教授: |
綦振瀛
Jen-Inn Chyi |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | 銻砷化銦鎵 、少數載子生命週期 、高電流增益/低片電阻比 |
| 外文關鍵詞: | minority carrier lifetime, InGaAsSb, high beta over sheet ratio |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要研究銻砷化銦鎵(InGaAsSb)材料之磊晶成長技術及其材料特性,同時將其應用於磷化銦(InP)系列電晶體元件之基極。在雙異質接面雙極性電晶體中,藉由增加基極摻雜濃度能夠降低其片電阻(RSH)而提升高頻特性,然而此舉又會因為Auger process機率增加而降低其電流增益。對此問題我們藉由電晶體基極中的少數載子生命期,分析InGaAsSb材料中摻雜濃度對Auger process的影響。
本研究另一個重點為四元材料的成長。 我們發展出一套能夠成長InGaAsSb材料晶格匹配於InP基板上,又能夠任意調整Sb成分的成長技術。 藉由改變磊晶成長條件以及設計不同電晶體之結構用以研究元件特性與材料之關係。 在所製作的In0.52Al0.48As/In0.09Ga0.91As0.58Sb0.42/In0.53Ga0.47As DHBT上可以得到VBE=0.45 V的低導通電壓以及?/RSH=0.073的高電流增益/片電阻比,已與傳統InP DHBT之最佳結果相當。
This dissertation describes the material growth and characterization of InP-based heterojunction bipolar transistors (HBTs) with an InGaAsSb base layer, which have the advantages of low turn-on voltage and high current capability. High doping concentration in base to reduce the base sheet resistance is necessary for achieving high fMAX, but it might also result in decreased current gain and ?/RSH ratio due to the enhanced Auger process. To obtain more insights into the current behavior of InGaAsSb base DHBTs, doping effect on the electron lifetime (?n) is studied.
In this research, we develop a growth technique for growing lattice- matched InGaAsSb on InP substrates with accurately controlled Sb composition. For a high Sb-content InGaAsSb layer, the amount of Ga is increased to complement the decreases of In while maintaining a constant growth rate and V/III ratio. In addition, the effects of Sb composition on the characteristics of InGaAsSb base DHBTs are investigated. The In0.52Al0.48As/ In0.09Ga0.91As0.58Sb0.42/In0.53Ga0.47As DHBT exhibits a low turn-on voltage of 0.45 V and a high ?/RSH ratio of 0.073, which is comparable to the state-of-the-art conventional InP DHBTs.
參考文獻
[1] S. H. Chen, S. Y. Wang, R. J. Hsieh and J. I. Chyi, “InGaAsSb/InP double heterojunction bipolar transistors grown by solid-source molecular beam epitaxy,” IEEE Electron Device Lett., vol. 28, no. 8, 2007.
[2] S. H. Chen, K. H. Teng, H. Y. Chen, S. Y. Wang, and J. I. Chyi, “Low turn-on voltage and high-current InP/In0.37Ga0.63As0.89Sb0.11/In0.53Ga0.47As double heterojunction bipolar transistors,” IEEE Electron Device Lett., vol. 29, no. 7, 2008.
[3] 陳書涵, “銻砷化銦鎵之雙翼直接面雙極性電晶體成長與特性分析”博士論文,國立中央大學,民國97 年。
[4] M. Dahlstrom, “Ultra High Speed InP Heterojunction Bipolar Transistors,” PhD Thesis., May 2003.
[5] C. R. Bolognesi, H. G. Liu, N. Tao, X. Zhang, S. Bagheri-Najimi, and S.P. Watkins, “Neutral base recombination in InP/GaAsSb/InP double heterostructure bipolar transistors: Suppression of Auger recombination in p+ GaAsSb base layers,” Appl. Phys. Lett., vol. 86, 253506, 2005.
[6] W. Liu, Handbook of III-V Heterojunction Bipolar Transistors, (Wiley-Interscience 1998).
[7] D. Vignaud, D. A. Yarekha, J. F. Lampin, M. Zaknoune, S. Godey, and F. Mollot, “Electron lifetime measurements of heavily C-doped InGaAs and GaAsSb as a function of the doping density,” Appl. Phys. Lett., vol. 90, 242104, 2007.
[8] Y. Oda, H. Yokoyama, K. Kurishima, T. Kobayashi, N. Watanabe and M. Uchida, “Improvement of current gain of C-doped GaAsSb-base heterojunction bipolar transistors by using an InAlP emitter,” Appl. Phys. Lett., vol.87, pp. 023503, 2005.
[9] I. Vurgaftman, J. R. Meyer and L. R. Ram-Mohan, “Band parameters for III-V compound semiconductors and their alloys,” J. Appl. Phys., vol. 28, 5815-5875, 2001.
[10] J. M. Ruiz-PalmeroU. Hammer, H. Jackel, H. Liu, C. R. Bolognesi, “Comparative technology assessment of future InP HBT ultrahigh-speed digital circuits,” Solid State Electrons., vol. 51, pp. 842-859, 2007.
[11] B. R. Wu, W. Snodgrass, M. Feng, K. Y. Cheng, “High-Speed InGaAsSb/InP double heterojunction bipolar transistor with composition graded base and InAs emitter contact layers,” J. Crystal Growth., vol. 301, pp. 1005-1008, 2007.
[12] W. Liu, S. K. Fan, T. S. Kim, E. A. Beam III, and D. B. Davito, “Current transport mechanism in GaInP/GaAs heterojunction bipolar transistor,” IEEE Trans Electron Devices., vol. 40, pp. 1378-1382, 1993.
[13] S. W. Cho, J. H. Yun, D. H. Jun, J. I. Song,I. Adesida, N. Pan, and J. H. Jang, “High performance InP/InAlAs/GaAsSb/InP double heterojunction bipolar transistors,” Solid State Electrons., vol. 50, pp. 902-907, 2006.
[14] 江佩宜, “銻砷化銦鎵基極雙載子電晶體之射極尺寸效應與歐姆接觸研究”碩士論文,國立中央大學,民國98 年。
[15] 鄧國宏, “具銻砷化銦鎵基極之磷化銦異質接面雙載子電晶體製作與分析”碩士論文,國立中央大學,民國97 年。
[16] H. G. Liu, N. Tao, S. P. Watkins and C. R. Bolognesi, “Extraction of the average collector velocity in high-speed type-II InP-GaAsSb-InP DHBTs,” IEEE Electron Device Lett., vol. 25, no. 12, pp. 769-771, 2004.
[17] T. Kaneto, K. W. Kim, and M. A. Littlejohn, “A comparison of minority electron transport in In0.53Ga0.47As and GaAs,” Appl. Phys. Lett., vol. 63, no. 1, pp 48-50, 1995.
[18] H. G. Liu, O. Ostinelli, Y. Zeng and C.R. Bolognesi, “600 GHz InP/GaAsSb/InP DHBTs Grown by MOCVD with a Ga(As,Sb) Graded-Base and fT × BVCEO>2.5 THz-V at Room Temperature,” pp. 667-670, IEDM 2007.
[19] G. Zohar, S. Cohen, V. Sidorov, A. Gavrilov, B. Sheinman, and D. Ritter, “Reduction of base-transit time of InP-GaInAs HBTs due to electron injection from an energy ramp and base-composition grading,” IEEE Trans Electron Devices., vol. 51, no. 5, pp. 658-662, 2004.
[20] Z. Griffith, E. Lind, and M. J.W. Rodwell, “Sub-300 nm InGaAs/InP type-I DHBTs with a 150 nm collector, 30 nm base demonstrating 755 GHz fmax and 416 GHz fT,” Proc. IPRM 2007, pp. 403-406, 2007.
[21] M. Levinshtein et al., “Handbook series on Semiconductor Parameters,” World Scientific.