跳到主要內容

簡易檢索 / 詳目顯示

研究生: 廖經皓
Ching-hao Liao
論文名稱: 退火處理對AZ61鎂合金擠製件熱壓微結構變化及變形特性的影響
Effect of annealing heat treatment on microstructure and hot deformation characteristics of extruded AZ61 magnesium alloy under hot compression
指導教授: 李雄
Shyong Lee
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 155
中文關鍵詞: AZ61鎂合金組合方程式動態再結晶流變應力應力乘積應變相關的組合參數
外文關鍵詞: AZ61 Mg alloy, Constitutive analysis, Dynamic recrystallization, Flow stress modeling, Stress multiplier, Strain-dependent constitutive parameters
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要以Gleeble-3500金屬熱加工模擬測試機對AZ61鎂合金擠製材於變形溫度在250℃-450℃、應變速率:1 x 10-3 - 1 s-1進行熱壓縮實驗並探討其熱變形的機制。以組合方程式對其熱變形的機制進行研究,進而考慮應變對組合方程式的影響進行研究。本研究以雙曲線正弦函數律的組合方程式進行分析,且建立應變對各參數之間的變化;其中包含了應力指數n,活化能Q和材料常數ln A,進行應變對流變行為的相關性分析。在研究的過程中發現固定的應力乘積α,計算出來的流變應力與實驗值有良好的吻合率,但在低的應變的變形條件下出現了較高的應變硬化,使得應力高估的現象出現。然而在本研究組合方程式分析中加入應變對各參數變化可使計算和實驗的流變應力得到了一個更好的評估。
    本研究也探討退火熱處理對組合方程式分析中加入應變對各參數間的變化。AZ61鎂合金經退火熱處理後,其熱壓縮的流變應力曲線呈現典型動態再結晶的特徵。然而不同的退火熱處理影響各試片的初始狀態,亦影響組合方程式中的各參數變化。


    In this study, the hot deformation characteristics and constitutive analysis of extruded AZ61 Mg alloy were investigated by hot compression tests conducted in the temperature range of 250 °C to 450 °C and strain rate range of 1×10−3 to 1 s−1 on a Gleeble-3500 thermo-simulation machine. The effect of strain on the constitutive parameters was taken into account in the constitutive analysis. Constitutive equations as a function of strain were established through a simple extension of the hyperbolic sine constitutive relation. The constitutive parameters, stress exponent n, activation energy Q, and ln A in the constitutive equations were calculated as a function of strain. Correlation between the strain-dependent constitutive parameters and flow behavior was analyzed. The constant stress multiplier (α) analysis result indicated that the calculated flow stresses were in good agreement with experimental ones, except at low strains at the deformation conditions with high strain hardening. On the other hand, the constitutive analysis with strain-dependent α value had better estimations between the calculated and experimental flow stresses throughout the entire temperature and strain rate ranges performed in this work.
    The effects of annealing heat treatments on the variations in constitutive parameters with strain were discussed. The hot ompressive flow curves exhibited typical features of dynamic recrystallization. Variations in constitutive parameters with strain were related to flow behavior and dependent on the initial conditions of the test specimens. The flow stresses of annealed AZ61 Mg alloys were predicted well by the strain-dependent constitutive equations of the hyperbolic sine function under the deformation conditions employed in this study.

    摘要 I Abstract III 致謝 IV 目錄 VI 圖目錄 X 表目錄 XVII 符號說明 XVIII 第一章 緒論 1 1-1 前言 1 1-2研究動機與目的 2 第二章 理論基礎與文獻探討 5 2-1 基礎理論 5 2-1.1 鎂合金之符號及分類 5 2-1.2合金添加元素對鎂合金的影響 7 2-1.3溫度對鎂合金之變形影響 9 2-1.4退火處理(Annealing) 10 2-1.5回復(Recovery) 10 2-1.6再結晶(Recrystallization) 11 2-1.7晶粒成長(Grain growth) 15 2-1.8材料的動態再結晶行為 16 2-2鎂合金之變形機制 17 2-3組合方程式 20 2-4驗證組合方程式 24 第三章 實驗方法與步驟 25 3-1實驗材料 25 3-2 實驗設備 28 3-2.1 Gleeble -3500型金屬熱加工模擬測試機 28 3-2.2光學顯微鏡(OM) 28 3-2.3 鑽石刀片精密切割機 29 3-2.4研磨拋光機 30 3-3 實驗步驟 31 3-3.1 Gleeble金屬熱加工模擬實驗 32 3-3.2金相顯微組織 32 第四章 實驗結果與討論 34 4-1流變行為 (Flow behavior) 34 4-2組合關係分析 42 4-2.1 冪次律及指數律計算α並分析組合關係 42 4-2.2 峰值應力取最小平均標準差計算α值 49 4-2.3 應變對組合關係之影響 54 4-2.3.1 冪次律及指數律於各應變下組合方程式分析 54 4-2.3.2 固定應力乘積α於各應變下組合方程式分析 64 4-2.3.3 不同應力乘積α於各應變下組合方程式分析 73 4-3 AZ61鎂合金退火熱處理 83 4-3.1 退火熱處理對AZ61鎂合金的影響 83 4-3.2 退火熱處理對AZ61鎂合金流變應力的探討 89 4-3.3 退火熱處理對AZ61鎂合金微結構的影響 94 4-3.4 AZ61鎂合金經退火熱處理後組合方程式探討 109 4-3.5 300℃退火熱處理對AZ61鎂合金組合方程式分析 115 4-3.6 400℃退火熱處理對AZ61鎂合金組合方程式分析 119 4-4組合方程式的驗證 123 第五章 結論 126 參考文獻 129 已發表期刊論文 135 研討會 135

    [1] H. Yoshinaga, R. Horiuchi, Jpn. Inst. Met. 5 (1964)14–21.
    [2] D.L. Yin, K.F. Zhang, G.F. Wang, W.B. Han, Mater. Sci. Eng. A 392 (2005) 320–325.
    [3] R. Panicker, A.H. Chokshi, R.K. Mishra, R. Verma, P.E. Krajewski, Acta. Mater. 57 (2009) 3683–3693.
    [4] S. Abdessameud, H. Azzeddine, B. Alili, D. Bradai, Trans. Nonferrous Met. Soc. China 10 (2010) 2215–2222.
    [5] U.F. Kocks, H. Mecking, Prog. Mater. Sci. 48 (2003) 171–273.
    [6] T. Al-Sammana, X. Li, S. Ghosh Chowdhury, Mater. Sci. Eng. A 527 (2010) 3450–3463.
    [7] T. Al-Samman, G. Gottstein, Mater. Sci. Eng. A 490 (2008) 411–420.
    [8] I.A. Maksoud, H. Ahmed, J. Rodel, Mater. Sci. Eng. A 504 (2009) 40–48.
    [9] J.A. del Valle, O.A. Ruano, Mater. Sci. Eng. A 487 (2008) 473–480.
    [10] G. Vespa, L.W.F. Mackenzie, R. Verma, F. Zarandi, E. Essadiqi, S. Yue, Mater. Sci. Eng. A 487 (2008) 243–250.
    [11] S.W. Xu, S. Kamado, T. Honma, Mater. Sci. Eng. A 528 (2011) 2385–2393.
    [12] C. Sellars, W.M. Tegart, Acta Metall. Vol. 14 (1966) 1136-1138.
    [13] C. Sellars, W.M. Tegart: Int. Metall. Rev. Vol. 17 (1972) 1-23.
    [14] H.J. McQueen, N.D. Ryan, Mater. Sci. Eng. A 322 (2002) 43–63.
    [15] Y.C. Lin, Qi-Fei Li, Yu-Chi Xi, Lei-Ting Li, Mater. Sci. Eng. A 534 (2012) 654–662.
    [16] J. Cai, F.G. Li, T.Y. Liu, B. Chen, M. He, Mater. Design 32 (2011) 1144–1151.
    [17] W. Li, H. Li, Z.X Wang, Z.Q. Zheng, Mater. Sci. Eng. A 528 (2011) 4098–4103.
    [18] S. Mandal, V. Rakesh, P.V. Sivaprasad, S. Venugopal, K.V. Kasiviswanathan, Mater. Sci. Eng. A 500 (2009) 114–121.
    [19] H.Y. Li, Y. Liu, X.C. Lu, X.J. Su, J. Mater. Sci. 47 (2012) 5411–5418.
    [20] D. Samantaray, C. Phaniraj, S. Mandal, A.K. Bhaduri, Mater. Sci. Eng. A 528 (2011) 1071–1077.
    [21] Y.C. Lin, Y.C. Xia, X.M. Chen, M.S. Chen, Comput. Mater. Sci. 50 (2010) 227–233.
    [22] G.L. Ji, F.G. Li, Q.H. Li, H.Q. Li, Z. Li, Mater. Sci. Eng. A 528 (2011) 4774-4782.
    [23] H.Y. Li, Y.H. Li, D.D. Wei, J.J. Liu, X.F. Wang, Mater. Sci. Eng. A 530 (2011) 367-372.
    [24] B. Verlinden, A. Suhadi, L. Delaey, Scripta Metall. 28 (1993) 1441-1446.
    [25] M. M. Avedesian and H. Baker. ASM Meltals Park, OH,(1999) 13-43.
    [26] K.F.Zhang,D.L.Yin and D.Z.Wu, International Journal of Machine Tool & Manufacture 46 (2006) 1276-1280
    [27] D. Magers and J. Willekens: “Global Outlook on the Use of Magnesium Die-Castings in Automotive Applications”, Proc. Magnesium Alloys and Their Applications, ed. by B. L. Mordike and K. U. Kainer, Werkstoff-Information sgesellschaftmbH, Frankfurt, (1998), pp. 105 ~ 112.
    [28] B. Bark, C. Berk and E. Hauschel: “Magnesium Die-Castings-Examples from a Supplier”, Proc. Magnesium Alloys and Their Applications, ed. By B. L. Mordike and K. U. Kainer, Werkstoff-Informationsgesellschaft mbH, Frankfurt, (1998), pp. 495 ~ 500.
    [29] W.J. Kim, J.D. Park, U.S. Yoon, J Alloys Compd. 464 (2008) 197.
    [30] J.A. Del Valle, M.T. Perez-Prado, O.A. Ruano, Metall. Mater. Trans., 36A (2005) 1427.
    [31] H. Watanabe, H. Tsutsui, T. Mukai, M. Kohzu, S. Tanabe, K. Higashi, Intern. J. Plast. 17 (2001) 387.
    [32] J.C. Tan, M.J. Tan, Mater. Sc. Eng. A, A339 (2003) 81.
    [33] H. Watanabe, T. Mukai, M. Kohzu, S. Tanabe, K. Higashi, Actamater., 47(1999)37-53
    [34] 向四海,林益瑋,李倉誠,“AZ鎂合金板材之熱間擠製加工研究”,鎂合金產業通訊11卷2期pp45~51,2009
    [35] 29. S.S. Vagarali, T.G. Langdon, Acta Metall., 30 (1982) 1157.
    [36] J.J. Blandin, D. Giunchi, M. Suery, E. Evangelista, Mater. Sc. Tech., 18 (2002) 333.
    [37] C. Zener,J.H.Hollomon,J.Appl.Phys.15(1944) 22–27.
    [38] O.D. Sherby, J. Wadsworth, Prog. Mater. Sci. 33 (1989) 169.
    [39] F.A. Mohamed, T.G. Langdon, Acta Metall. 22 (1974) 779.
    [40] F.A. Mohamed, Mater. Sci. Eng. 38 (1979) 73.
    [41] O.D. Sherby, P.M. Burke, Prog. Mat. Sci. 13 (1967) 325.
    [42] H. Okamoto, J. Phase Equilib. 19 (1998) 598.
    [43] H.Y. Wu, J.C. Yang, J.H. Liao, F.J. Zhu, Mater. Sci. Eng. A 535 (2012) 68–75.
    [44] H.Y. Wu, J.C. Yang, F.J. Zhu, H.C. Liu, Mater. Sci. Eng. A 550 (2012) 273–278.
    [45] C.H. Liao, H.Y. Wu, S. Lee, F.J. Zhu, H.C. Liu, C.T. Wu, Mater. Sci. Eng. A 565 (2013) 1–8.
    [46] H.Y. Wu, J.C. Yang, F.J. Zhu, C.T. Wu, Mater. Sci. Eng. A 574 (2013) 17–24.
    [47] W. Roberts, Deformation, Processing, and Structure, AMS, Metals Park, Ohio, 1984, p. 109–184.
    [48] T. Sakai, J. Mater. Process. Technol. 53 (1995) 349–361.
    [49] A. Dehghan-Manshadi, P.D. Hodgson, ISIJ Int. 47 (2007) 1799–1803.
    [50] R. Le Gall, J.J. Jonas, Acta Mater. 47 (1999) 4365–4374.
    [51] J.J.Jonas, T.Sakai, Deformation, Processing, and Structure, AMS, Metals Park, Ohio, 1984, p. 185–230.
    [52] M.J. Luton, C.M. Sellars, Acta Metall. 17 (1969) 1033–1043.
    [53] I. Weiss, T. Sakai, J.J. Jonas, Met. Sci. 18 (1984) 77–84.
    [54] T. Sakai, J.J. Jonas, Acta Metall. 32 (1984) 189–209.
    [55] T. Sakai, M.G. Akben, J.J. Jonas, Acta Metall. 31 (1983) 631–641.
    [56] W. Roberts, H. Boden, B. Ahlblom, Met. Sci. 13 (1979) 195–205.
    [57] M.M. Myshlyaev, H.J. Mcqueen, A. Mwembela, E. Konopleva, Mater. Sci. Eng. A 337 (2002) 121–133.
    [58] T. Al-Samman, G. Gottstein, Mater. Sci. Eng. A 490 (2008) 411–420.
    [59] Z.Y. Liu, S. Bai, S.B. Kang, Scr. Mater. 60 (2009) 403–406.
    [60] A. Galiyev, R. Kaibyshev, T. Sakai, Mater. Sci. Forum 419–420 (2003) 509–514.
    [61] A. Galiyev, R. Kaibyshev, G. Gottstein, Acta Mater. 49 (2001) 1199–1207.
    [62] S.E. Ion, F.J. Humphreys, S.H. White, Acta Metall. 30 (1982)1909–1919.
    [63] H.J. Frost, M.F. Ashby, Deformation-mechanism Maps-The Plasticity and Creep of Metals and Ceramics, Pergamon Press, Oxford, 1982.
    [64] S.S. Vagarali, T.G. Langdon, Acta Metall. 30 (1982) 1157–1170.
    [65] Y.V.R.K. Prasad, K.P. Rao, N. Hort, K.U. Kainer, Mater. Lett. 62 (2008) 4207–4209.
    [66] H. Zhang, E.V. Konopleva, H.J. McQueen, Mater. Sci. Eng. A 319–321 (2001) 711–715.
    [67] H. Watanabe, H. Tsutsui, T. Mukai, M. Kohzu, S. Tanabe, K. Higashi, Int. J. Plast. 17 (2001) 387–397.
    [68] H. Somekawa, K. Hirai, H. Watanabe, Y. Takigawa, K. Higashi, Mater. Sci. Eng. A 407 (2005) 53–61.
    [69] M. Suery, B. Baudelet, Rev. Phys. Appl. 13 (1978) 53–66.
    [70] O.D. Sherby, M. Burke, Prog. Mater. Sci. 13 (1966) 323–390.
    [71] O.D. Sherby, J. Wadsworth, Prog. Mater. Sci. 33 (1989) 169–221.
    [72] H. Takuda, S. Kikuchi and N. Hatta, “Possibility of Grain Refinement for Superplasticity of Mg-Al-Zn Alloy by Pre-Deformation”, J. Mater. Sci., Vol. 27, 1992,pp. 937-940.
    [73] N. Osada, K. Ohtoshi, M. Katsuta, S. Takahashi and T. Yamada, “The Influence of the Annealing Temperature on Uniaxial and Biaxial Deformation of the AZ31 Magnesium Alloy Sheet”, J. JIM, Vol. 50(2), 2000, pp.60-64.
    [74] T. G. Langdon, “An Evaluation of the Strain Contributed by Grain Boundary Sliding in Superplasticity”, Mater. Sci. Eng., A174, 1994, pp. 225-230
    [75] G. Rai. and N. J. Grant, “Observations of Grain Boundary Sliding during Superplasticity Deformation”, Metall. Trans., Vol. 14A, 1983, pp. 1451-1458.
    [76] J. F. Humphreys and M. Hatherly, “ Recrystallization and related annealing phenomena” , Oxford, UK, Pergamon, Tarrytown, N. Y., U.S.A. ,1996, pp. 363-388.
    [77] J. P. Sah, G. J. Richardson and C. M. Sellars, “Grain-Size Effects During Dynamic Recrystallization of Nickel”, Metal. Sci., Vol. 8(10), 1974, pp. 325-331.

    QR CODE
    :::