跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳彥任
YEN-JEN CHEN
論文名稱: 酸蝕刻清洗槽中晶圓表面平坦度之數值模擬
Numerical Simulation of Wafer Surface Flatness in Acid Etching Cleaning Tank
指導教授: 陳志臣
Jyh-Chen,Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 74
中文關鍵詞: 酸蝕刻清洗槽晶圓平坦度
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 酸蝕刻清洗槽內的流體流動以及質傳現象十分重要,晶圓表面蝕刻均勻性會受到此兩者因素的影響,而晶圓表面經過蝕刻清洗後的平坦度會接著影響到半導體的後續製程和最後的生產良率,故為了解酸蝕刻清洗槽內的現象,為此建立數值模型,藉此深入探討,釐清系統。
    本研究依據酸蝕刻的機制及清洗槽兩相流的特性建立數學模型,在與實驗相同條件之操作條件下進行數值模擬,與實驗數據比較,驗證模擬的有效性,接著探討清洗槽內的流動狀態與蝕刻液傳遞到晶圓表面進行反應的形式,再透過改變模型輸入的流量、晶圓轉速、輪桿數量等參數,了解晶圓平坦度在不同邊界條件下會有何變化。發現到流量與轉速會以不同的趨勢影響晶圓平坦度,較大的入口流量會使晶圓邊緣的蝕刻速率大幅上升,較高的晶圓轉速會提高整體的蝕刻速率,而支撐並帶動晶圓旋轉的輪桿會造成速度邊界層縮減,產生晶圓邊緣蝕刻的反曲現象,這是影響蝕刻晶圓造成晶圓邊緣平坦度不佳的主要因素。


    The fluid flow and mass transfer phenomenon in the acid etching cleaning tank are very important, and the etching uniformity of the wafer surface will be affected by these two factors. The flatness of the wafer surface after etching and cleaning will then affect the subsequent semiconductor process and the final production yield. Therefore, in order to understand the phenomenon in the acid etching cleaning tank, a numerical model is established for this purpose, so as to conduct in-depth discussions and clarify the system.
    In this study, a mathematical model was established based on the mechanism of acid etching and the characteristics of the two-phase flow in the cleaning tank. Numerical simulation is carried out under the same operating conditions as the experiment, and the validity of the simulation is verified by comparing with the experimental data. Then, the flow state in the cleaning tank and the form of reaction of the etchant delivered to the wafer surface are discussed. Then, by changing the parameters such as flow rate, wafer rotation speed, and number of roller input by the model, we can understand how the wafer flatness changes under different boundary conditions. We found that the flow rate and the rotational speed will affect the wafer flatness in different trends. A larger inlet flow rate will greatly increase the etching rate of the wafer edge. A higher wafer rotational speed will increase the overall etching rate. The roller that supports and drives the wafer to rotate is the main factor affecting the poor flatness of the wafer edge caused by the etching wafer.

    目錄 摘要 i Abstract ii 致謝 iii 目錄 iv 圖目錄 vi 符號說明 ix 第一章 緒論 1 1.1 研究背景 1 1.2 酸蝕刻化學反應式 2 1.3 氣泡之物理現象 4 1.4 文獻回顧 6 1.5 研究動機與目的 8 第二章 研究方法 14 2.1模型幾何 14 2.2物理系統 14 2.3基本假設 15 2.4統御方程式 16 2.5邊界條件 18 2.6無因次參數 20 第三章 數值方法 25 3.1 數值分析求解 25 3.2 網格配置 26 第四章 結果與討論 30 4.1 層流與紊流模型的選擇 30 4.2 不同的輪桿數量對晶圓蝕刻之影響 33 4.3 改變入口流速與晶圓轉速對晶圓蝕刻之影響 35 4.4 化學反應常數與擴散係數對晶圓蝕刻之影響 37 第五章 結論與未來研究方向 56 5.1 結論 56 5.2 未來研究方向 57 參考文獻 59

    參考文獻
    [1] M. S. Kulkarni, H. F. Erk “Acid‐Based Etching of Silicon Wafers: Mass‐Transfer and Kinetic Effects” Journal of The Electrochemical Society, Vol. 147, pp.176-188 (2000)
    [2] M. Steinert, J. Acker, S. Oswald, K. Wetzig “Study on the Mechanism of Silicon Etching in HNO3-Rich HF/HNO3 Mixtures” The Journal of Physical Chemistry, Vol. 111, pp.2133-2140 (2007)
    [3] H. Robbins, B. Schwartz “Chemical Etching of Silicon: I . The System HF, HNO3 and H2O” Journal of The Electrochemical Society, Vol. 106, pp. 505-510 (1959)
    [4] S. Hosokawa, A. Tomiyama “Bubble-Induced Pseudo Turbulence in Laminar Pipe Flows” International Journal of Heat and Fluid Flow, Vol. 40, pp. 97-105 (2013)
    [5] R. Rzehak, E. Krepper “CFD Modeling of Bubble-Induced Turbulence” International Journal of Multiphase Flow, Vol. 55, pp.138-155 (2013)
    [6] H. Kolbel, H. Ackermann “Large Scale Tests on the Fischer-Tropsch Liquid Phase Synthesis” Chemistry Engineer Technology, vol. 28, pp. 381 (1956)
    [7] J. Schweitzer, J. C. Vigui “Reactor Modeling of a Slurry Bubble Column for Fischer-Tropsch Synthesis” Oil & Gas Science and Technology-revue De L Institut Francais Du Petrole, Vol.64, pp.63-77 (2009)
    [8] G. Riboux, F. Risso, D. Legendre “Experimental Characterization of the Agitation Generated by Bubbles Rising at High Reynolds Number” Journal of Fluid Mechanics, Vol. 643, pp. 509-539 (2010‬)
    [9] C. Garnier, M. Lance, J.L. Marie “Measurement of Local Flow Characteristics in Buoyancy-Driven Bubbly Flow at High Void Fraction” Experimental Thermal and Fluid Science, Vol. 26, pp.811-815 (2002)
    [10] S. H. Park, C. Park, J. Y. Lee, B. Lee “A Simple Parameterization for the Rising Velocity of Bubbles in a Liquid Pool” Nuclear Engineering and Technology, Vol. 49, pp.692-699 (2017)
    ‬[11] Y. Liao, D. Lucas “A Literature Review of Theoretical Models for Drop and Bubble Breakup in Turbulent Dispersions” Chemical Engineering Science, Vol. 64, pp. 3389-3406 (2009)
    [12] M. E. Shawkat, C. Y. Ching, M. Shoukri “Bubble and Liquid Turbulence Characteristics of Bubbly Flow in a Large Diameter Vertical Pipe” International Journal of Multiphase Flow, Vol. 34, pp. 767-785 (2008)
    [13] Y. Sato, M. Sadatomi, K. Sekoguchi “Momentum and Heat Transfer in Two-Phase Bubble Flow—I. Theory” International Journal of Multiphase Flow, Vol. 7, pp. 167-177 (1981)
    [14] A. Serizawa, I. Kataoka “Turbulence Suppression in Bubbly Two-Phase Flow” Nuclear Engineering and Design, Vol. 122, pp. 1-16 (1990)
    [15] E. Alméras, F. Risso, V. Roig, S. Cazin, C. Plais, F. Augier “Mixing by Bubble-Induced Turbulence” Journal of Fluid Mechanics, Vol. 776, pp. 458-474 (2015)
    [16] A. Das “Analytical Solution to the Flow between Two Coaxial Rotating Disks Using HAM” Procedia Engineering, Vol. 127, pp. 377-382 (2015)
    [17] D. J. Monk, D. S. Soane, R. T. Howe “Determination of the Etching Kinetics for the Hydrofluoric Acid/Silicon Dioxide System” Journal of The Electrochemical Society, Vol. 140, pp. 2339-2346 (1993)

    QR CODE
    :::