跳到主要內容

簡易檢索 / 詳目顯示

研究生: 尹拉文
Septiyadi Irawan
論文名稱: 探討南灣西側海岸線淺水區海水溫降機制之研究
ON THE MECHANISMS OF THE WATER COOLING IN THE SHALLOW WATER WEST OF NANWAN COASTLINE, SOUTHERN TAIWAN
指導教授: 錢樺
Hwa Chien
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 水文與海洋科學研究所
Graduate Instittue of Hydrological and Oceanic Sciences
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 146
中文關鍵詞: 南灣週期性海水溫降事件內波溯升渦漩引致之湧升流
外文關鍵詞: periodic water temperature drop at Nanwan Bay, internal waves run-up, eddy-induced upwelling
相關次數: 點閱:18下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣南部南灣的不尋常生物物理現象,例如1988年大量魚類死亡,與表面水溫驟降有關,而最近的論證表明,水體冷卻是由潮汐引起渦漩進而帶動湧升流的結果。本研究的目的為重新檢視南灣的溫降機制,重點關注其於渦漩之間的關係,並探討其它的冷卻機制,例如內波淺化。本研究使用2016年6至7月的現地量測和遙測資料,來源包括(i)本研究團隊所部設的ADCP和uCTD;(ii)台灣海洋科技研究中心的水底溫度計和岸基高頻雷達(CODAR);(iii)日本宇宙航空研究開發機構(JAXA)的向日葵八號(Himawari-8)海表溫度。南灣海域在大潮期間會發生強烈的分層現象,滿足內波形成的必要條件。本研究發現,大潮期間的強分層現象並不總是伴隨著渦漩的紀錄。在28天的量測中,記錄到16次有渦漩的溫降事件、4次有渦漩而沒有溫降事件、9次沒有渦漩的溫降事件。溫降事件和渦漩的關係在本研究也透過海流場向量分析進行探討,包括散度、渦度、應力、Okubo-Weiss參數和瞬時分離率(Instantaneous Rate of Separation, IROS)。渦漩的存在使得場的渦度上升,而湧升流造成的溫降事件則伴隨著顯著的Okubo-Weiss參數。在溫度驟降時,內波溯升現象的發生與沒有渦漩的溫降事件高度吻合。而後將此與實驗尺度的內重力波分析進行比較,結果表明,內波的溯升被低估了,這代表此估計對於輸入參數的微小變化非常敏感。內波溯升的紀錄也受到uCTD溫度和鹽度剖面的影響,顯示出不同潮汐週期的海水分層的發展。最後,本研究統整出:在南灣的西側海岸線上,渦漩可能佔總體冷卻機制的55%,而內波溯升傳遞至海岸線的機率佔31%。


    Unusual biophysical phenomenon at Nanwan Bay, Southern Taiwan, for example enormous death of fish in 1988 was associated with sudden surface water cooling. Recent arguments reveal that the cooling water was consequence of upwelling due to tide-induced cyclonic eddy. The aim of this study is to revisit the cooling mechanism in Nanwan Bay, by focusing on the relation of eddy and cold event; and exploring alternative cooling water mechanism, i.e. by internal waves shoaling. This study utilizes both in-situ measurements and remote sensing datasets which were measured during June-July 2016, including (i) ADCP & uCTD deployed by Marine Physical Observation Research Group (MPORG); (ii) bottom temperature gauges and CODAR from Taiwan Ocean Research Institute (TORI); and (iii) Himawari-8 SST by Japan Aerospace Exploration Agency (JAXA). Nanwan Bay encounters strong stratification during spring tide, which it is the ingredient of internal waves formation. This study found that the strong stratification during spring tide were not followed by sequence of cyclonic eddy. For 28 days’ measurement, there were 16 events of cold event with eddies; 4 event of eddy without cold event; and 9 events of cold event without eddy. The relation of cold event and cyclonic eddies was also investigated by some derived field vector of surface current, including divergence, vorticity, strain, Okubo-Weiss and IROS. Eddy presence increases the vorticity of the field, and upwelling cold event is followed by significant Okubo-Weiss number. The internal waves run-up was marked at which temperature drop suddenly and was highly coincident with the classification of cold event with no eddy. This marking was then compared to the internal gravity current analysis from both laboratory and numerical scaling. The comparison result showed that the internal waves run-up was underestimated, indicating that the estimation is very sensitive to the small change of the input parameter. The internal waves run-up footprint was also influenced out by temperature and salinity profile of uCTD, which showed the development of stratified water on different tide cycles. Thus, this study concludes that the eddy may play about 55% of total cooling mechanism probability at the west coastline of Nanwan, and internal waves run-up propagation to the coastline take only 31% of that probability.

    Abstract ii 中文摘要 iii Acknowledgement iv Contents vi Figures viii Tables xxii Symbols xxiv Chapter I: Introduction 1 1.1. Motivation 1 1.2. Research Purpose 6 1.3. Research Direction 7 1.4. Research Limitations 8 Chapter II: Theoretical Reviews of Possible Explanations 9 2.1. Internal Waves Run-up 9 2.1.1. Infinitely-depth Fluid 11 2.1.2. Finite-depth Fluid 12 2.1.3. Shallow Depth 13 2.1.4. Internal Gravity Current Scaling 13 2.2. Cyclostrophic flow eddy induced upwelling 18 Chapter III: Dataset Sources 20 3.1. In-situ Measurements 21 3.1.1. ADCP 21 3.1.2. Bottom Temperature Gauges 23 3.1.3. Tidal Sea Level 23 3.1.4. uCTD 23 3.2. Remote Sensing 25 3.2.1. SST Himawari-8 25 3.2.2. CODAR 28 Chapter IV: Theoretical Basis of Data Analysis 29 4.1. Eddy Identifier 29 4.2. Internal Waves Scaling 32 4.2.1. Internal Waves Run-up Event Characteristics 32 4.2.2. Internal Gravity Current Estimation 38 4.2.3. Observation of Nonlinear Internal Waves Run-up to the Surfzone 40 4.3. Surface Current Analysis 43 4.3.1. Divergence 43 4.3.2. Vorticity 44 4.3.3. Strain 44 4.3.4. Okubo-Weiss 45 4.3.5. Instantaneous Rate of Separation (IROS) 46 Chapter V: Results and Discussions 47 5.1. Temperature Time Series 47 5.2. Auto-identifying Eddy 52 5.3. Relation of Eddy and Bottom Temperature Gauges 59 5.4. Internal Waves Characterizations 68 5.5. Stratification of Nanwan Bay 79 5.6. The possible cooling mechanism at Nanwan Bay 83 Chapter VI: Conclusions 86 References 88 Appendix A: Eddy without Cold Event 92 Appendix B: Cold Event without Eddy 95 Appendix C: Eddy & Cold-event Presences 103

    Alford, M., Peacock, T., MacKinnon, J. et al. (2015). The formation and fate of internal waves in the South China Sea. Nature 521, 65–69.
    Archer, M.R., Shay, L.K., Jaimes, B. and Martinez-Pedraja, J. (2015). Observing frontal instabilities of the Florida Current using high frequency radar. Coastal Ocean Observing Systems 2015, 179-208.
    Benjamin, T.B. (1968). Gravity currents and related phenomena. Journal of Fluid Mechanics, 31, 52-63.
    Broitman, B. R., Blanchette, C. A. and Gaines, S. D. (2005). Recruitment of intertidal invertebrates and oceanographic variability at Santa Cruz Island, California. American Society of Limnology and Oceanography 50(5), 1473-1479.
    Chang, Y.L. and Oey, L.Y. (2013). Analysis of STCC eddies using the Okubo-Weiss parameter on model and satellite data. Deutsche Hydrographische Zeitschrift 64(2).
    Chen, C. A. (1999). Analysis of scleractinian distribution in Taiwan indicating a pattern congruent with sea surface temperature and currents: examples from Acropora and Faviidae Corals. Zoological Studies 38(2): 119-129.
    Chen, C. A. and Keshavmurthy, S. (2009). Taiwan as a connective stepping-stone in the Kuroshio Triangle and the conservation of coral ecosystems under the impacts of climate change. Kuroshio Science 3-1, 15-22.
    Chen, C. Y., Shao, K. T. and Tu, Y. Y. (2004). Effect of thermal dischargeds on the fish assemblages of a nuclear power plant in Northern Taiwan. Journal of Marine Science and Technology, 12(5), 404-410.
    Chen, C. T. A., Ou, S. C., Chung, Y. C., Wu, C. K. and Chun, L. R. (1978). Researcg of living resouces around the nuclear power plant in Southern Taiwan. Tech. Rep. 20, College of Marine Science, National Sun Yat-Sen University, 195 pp.
    Fischer, S. and Thatje, S. (2008). Temperature-induced oviposition in the brachyuran crab Cancer setosus along a latitudinal cline: Aquaria experiment and analysis of field-data. Journal of Experimental Marine Biology and Ecology 357(2), 157-164.
    Fu, S. B. (1991). Tidal and wind modulation of water temperature in Nanwan. Master Thesis, Institute of Oceanography, National Taiwan University, 69pp.
    Hsu, P. C., Lee, H. J., Zheng, Q., Lai, J. W., Su, F. C., and Ho, C. R. (2020). Tide-induced periodic sea surface temperature drops in the coral reef area of Nanwan Bay, Southern Taiwan. Journal of Geophysics Research: Oceans, 125.
    Huang, Z. H. (2017). Lecture note: Nearshore oceanography and hydrodynamics. Institute of Hydrology and Oceanic Sciences, National Central University.
    Hwang, D. F., Chien, L. T., Shao, K. T., and Jeng, S. S. (1998). Levels of heavy metals and vitamin C in deformed thornfish found in thermal waters and effect of vitamin C on deformation of thornfish. Fisheries Science 64(2), 291-194.
    Kaplan, D.M. and Largier, J. (2006). HF radar-derived origin and destination of surface waters off Bodega Bay, California. Deep-Sea Research II 53 (2006), 2906-2930.
    Keshavmurthy, S., Kuo, C. Y., Huang, Y. Y., Carballo-Bolanos, R., Meng, P. J., Wang, J. T., and Chen, C. A. (2019). Coral reef resilience in Taiwan: lesson from long-term ecological research on the coral reefs of Kenting National Park (Taiwan). Journal of Marine Science and Engineering, 2019, 7, 388.
    Ko, D.S., Chao, S.Y., Huang, P. and Lin, S.F. (2008). Anomalous upwelling in Nan Wan: July 2008. Terrestrial Atmospheric Ocean Science, Vol. 20, No.6, 839-852.
    Lee, H. j., Chao, S. Y., Fan, K. l., Wang, Y. h. and Liang, N. K. (1997). Tidally induced upwelling in a semi-enclosed basin: Nan Wan Bay. Journal of Oceanography, Vol. 53, 476-480.
    Lee, H. J., Chao, S. Y., and Fan, K. L. (1999). Flood-ebb disparity of tidally induced recirculation eddies in a semi-enclosed basin: Nan Wan Bay. Continental Shelf Research 19 (1999), 871-890.
    Lee, H. J., Chao, S. Y., Fan, K. L. and Kuo, T. Y. (1999). Tide-induced eddies and upwelling in a semi-enclosed basin: Nan wan. Estuarine, Coastal and Shelf Science (1999) 49, 775-787.
    Lee, I. H., Fan, T.Y., Fu, K. H. and Ko, D. S. (2020). Temporal variation in daily temperature minima in coral reefs on Nanwan Bay, Southern Taiwan. Science Report 10, 8656.
    Liang, N. K., Lien, S. L., Chen, W. C. and Chang, H. T. (1978). Oceanographic investigation in the vicinity of Ma-An-San and Nan Wan Bay. Special publication no 18., Institute of Oceanography, National Taiwan University, 207pp.
    Marleau, L.J., Flynn, M.R. and Sutherland, B.R. (2014). Gravity currents propagation up a slope. Physics of Fluids, vol. 26, 046605.
    Maxworthy, T., Leilich, J., Simpson, J.E. and Meiburg, E.H. (2002). The propagation of a gravity current into a linearly stratified fluid. Journal of Fluid Mechanics 453, 371-394.
    Nash J.D. and Moum, J.N. (2005). River plumes as a source of large amplitude internal waves in the coastal ocean. Nature 437, 548-551.
    Nencioli, F., Dong, C., Dickey, T., Washburn L. and McWilliams, J.C. (2010). A vector geometry–based eddy detection algorithm and its application to a high-resolution numerical model product and high-frequency radar surface velocities in the Southern California Bight. Journal of Atmospheric and Oceanic Technology, 27(3), 564-579.
    Obura, D. and Mangubhai, S. (2011). Coral mortallity associated with thermal fluctuations in the Phoenix Island, 2002-2005. Coral Reef 30, 607-619.
    Oey, L. Y. (2020). Lecture notes: Atmospheric & oceanic processes. Institute of Hydrology and Oceanic Sciences, National Central University.
    Phillips, N. E. (2005). Growth of filter-feeding benthic invertebrates from a region with variable upwelling intensity. Marine Ecology Progress Series 295, 79-89.
    Schaeffer, A., Gramoulle, A., Roughan, M. and Mantovanelli, A. (2017). Characterizing frontal eddies along the East Australian Current from HF radar observation. Journal of Geophysical Research: Ocean, 122, 3964-3980.
    Shin, J.O., Dalziel, S.B. and Linden, P.F. (2004). Gravity current produced by lock exchange. Journal of Fluid Mechanics, vol. 521, 1-34.
    Sinnett, G., and Feddersen, F. (2019). The nearshore heat budget: effects of stratification and surfzone dynamics. Journal of Geophysical Research: Oceans, 124.
    Sinnett, G., Feddersen, F., Lucas, A. J., Pawlak, G. and Terrill, E. (2018). Observation of nonlinear internal waves rup-up to the surfzone. Journal of Physical Oceanography, 48(3), 531-554.
    Su, J.C., Hung, T.C., Chiang, Y.M., Tan, T.H., Chang, K.H., Huang C.C., Huang, C.Y., Shao, K.T., Huang, P.P., Lee, K.T., Fan, K.L. and Yeh., S.Y. (1989). An ecological and environmental survey on the waters adjacent to the southern nuclear power plan. SCOPE/ROC, Academia Sinica, 70, 238.
    Sutherland, B.R. (2010). Internal Gravity Waves. Cambridge.
    Sutherland, B.R., Barrett, K.J. and Ivey, G.N. (2013). Shoaling internal solitary waves. Journal of Geophysical Research: Oceans, vol. 118, 4111-4124.
    Sverdrup, H.U., Johnson, M.W. and Fleming R.H. (1942). The ocean their physics, chemistry and general biology. New York: Prentice-Hall, c1942.
    Tew, K.S., Leu, M.Y., Wang, J.T., Chang, C.M., Chen, C.C. and Meng, P.J. (2014). A continuous, real-time water quality monitoring system for the coral reef ecosystems of Nanwan Bay, Sotuhern Taiwan. Marine Pollution Bulletin, 85, 641-647.
    Visbeck, M. (2002). Deep Velocity Profiling Using Lowered Acoustic Doppler Current Profilers: Bottom Track and Inverse Solutions. Journal of Atmospheric and Oceanic Technology 19, 794-807.
    Zhang, Z., Qiu, B., Klein P. and Travis, S. (2019). The influence of geostrophic strain on oceanic ageostrophic motion and surface chlorophyll. Nature Communications, (2019) 10: 2838.

    QR CODE
    :::