| 研究生: |
楊秉勳 Pin-Hsuin Yang |
|---|---|
| 論文名稱: |
Be與Fe含量對A357合金微結構及 Effects of Be and Fe Content on Microstructure and Stress corrosion cracking in A357 Alloys |
| 指導教授: |
李勝隆
Sheng-Long Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 56 |
| 中文關鍵詞: | 應力腐蝕破裂 |
| 外文關鍵詞: | A357, stress corrosion cracking |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
A357合金中的介金屬化合物主要為β′-Mg2Si析出硬化相以及富鐵相,隨著富鐵相成份與形態的改變,合金的機械性質也會跟著有顯著的改變。許多學者曾經針對Al-Si-Mg合金中添加Be對合金機械性質的影響做過詳細的研究,但其中並不包括抗應力腐蝕性。本研究配製四組Fe與Be含量不同之A357合金,並施以T6熱處理後,利用微結構分析、機械性質量測、電化學量測以及慢應變速率拉伸測試,來探討Be與Fe含量對A357鋁合金微結構(富鐵相介金屬化合物、共晶Si粒子、Mg2Si析出強化相)、機械性質以及應力腐蝕性質之影響。
粗大的富鐵相容易因應力集中成為破裂的起始點,富鐵相的含量越多,材料的機械性質越差。不加Be的A357合金,含有大量的針狀富鐵相及文字型含Mg的富鐵相,Be的添加可減少富鐵相的含量,並改善其成分與形狀,使針狀富鐵相與含Mg的文字型富鐵相被不含Mg的結節狀(球、塊狀)富鐵相取代,含Mg文字型富鐵相的減少,使固溶於基地內的Mg含量增加,促進Mg2Si的析出動力與析出量,藉以提昇材料的機械性質。
富鐵相數量的增加使材料的抗腐蝕能力降低,然而在晶界處並沒有富鐵相的存在,故富鐵相的數量與形態對合金抗應力腐蝕性質無明顯之影響。A357合金晶界析出物數量少,析出物彼此之間沒有連結,且其活性與基地相近,不利於應力腐蝕裂縫成長,故具有良好的抗應力腐蝕性質。
β′-Mg2Si and iron-beraing phases are the main intermetallic compounds in A357 alloys.With the changes of composition and shape,mechanical properties of the alloys change evidently.Many people researched the relation between Be content and mechanical properties but rsearchs on stress corrosion cracking are absent.Effects of Be and Fe Content on Microstructure and Stress corrosion cracking in A357 Alloys are investigated.
A larger amount of acicular shape and scrip morphology of Mg-containing structure of iron-bearing phases were found in Be-free alloys.
These structures are replaced by nodular shape Mg-free structure of iron-bearing constituents when Be is added.The addition of Be reduce the amount of iron-bearing phases,increase amount of solid solution of Mg.The addition of Be could enhance the precipitation kinetics and increase the amounts of Mg2Si to promote the tensile properties.With the increasing the amount of iron-bearing phases,the corrosion resistane is reduced.The amounts,composition and shape of iron-bearing phases are insignificant about SCC resistance because of the absence of the iron-bearing pricipitations at the grainboundaries. Less amounts,discontinuous arrangement and similar activity to matrix of the precipitations at grainboundary are unfavorable for grow of the crevices. Therefore A357 alloys have excellent SCC resistance.
1.J.R.Davis, Aluminum and aluminum alloys, ASM Specialty Handbook, Ohio, ASM, 1994.
2.J.E.Hatch, Aluminum: Properties and physical metallurgical, Ohio, ASE, pp. 320-350, 1984.
3.K.G.Wikle, Improving aluminum casting with beryllium, AFS Trans., pp. 513-518, 1978.
4.Y.H.Tan, S.L.Lee and Y.L.Lin, Effects of Be and Fe additions on the microstructure and mechanical properties of A357.0 alloys, Metallu- rgical and Materials Transactions A vol. 26A, pp. 1195-1205, 1995.
5.Thmoas, J.Inst.Met, 90(1961-63)57.
6.Lutts, Acta Met., vol. 9, pp57-69, 1961.
7.K.Matsuda, S.Tada, S.Ikeno, T.Sato and A.Kamio, Crystal system of rod-shaped precipitates in an Al-1.0mass%Mg2Si-0.4mass%Si alloy, Scripta Metallurgical et Materialia, vol.32 , pp. 1175-1180, 1995.
8.D.A.Dranger, R.R.Sawtell and M.M.Kersker, Effects of beryllium on the properties of A357.0 castings, AFS Transactions, vol. 15, pp. 579-586, 1984.
9.O.Vorren, J.E.Evensen and T.B. Pedersen, Microstructure and mechanical properties of AlSi(Mg) casting alloys, AFS Trans., vol. 92, pp. 459-466, 1984.
10.L.A.Bendersky, A.J.Mcalister and F.S. Biancaniello, Phase transformation during annealing of rapid solidified Al-rich Al-Fe-Si alloys, Metall. Trans. A, vol. 19A, pp. 2893-2900, 1988.
11.P.Skjerpe, Intermetallic phase formed during DC-casting of an Al-0.25wt pct Fe-0.13wt pct Si alloy, Metall. Trans. A, vol. 18A, pp. 189-200, 1987.
12.A.M.Zakharov, I.T.Gul’din, A.A.Arnol’d and Yu.A.Matsenko, Phase diagram of the Al-Si-Fe system within the concentration range of 10-14%Si and 0-3%Fe, Russ. Metall., vol. 3, pp. 177-180, 1988.
13.T.D.Burleigh, The postulated mechanisms for stress corrosion cracking of aluminum alloys, Corrosion, vol. 47, pp. 89-98, 1991.
14.P.K.Poulose, J.E. Morral and A.J.Mcevily, Stress corrosion crack velocity and grain boundary precipitates in Al-Zn-Mg alloy, Metall. Trans., vol. 5, pp. 1393-1400, 1974.
15.M.O.Speidel, Stress corrosion cracking of aluminum alloys, Metall. Trans. A, vol. 6A, pp. 631-651, 1975.
16.L.Christodoulou and H.M. Flower, Hydrogen embrittlement and trapping in Al-6%Zn-3%Mg, Acta Metall., vol. 28, pp. 481-487, 1980.
17.D.Apelian, S.Shivkumar and G.Sigworth, Foundmental aspects of heat treatment of cast Al-Si-Mg alloys, AFS Trans., pp. 727-742, 1989.
18.B.Closset, R.A.L.Drew and J.E.Gruzleski, Eutectic silicon shape control by situ measurement of resistivity, AFS Trans., pp. 9-16, 1986.
19.C.W.Meyers, Solution heat treatment effects on ultimate tensile strength and uniform elongation in A357 Aluminum alloys, AFS Trans., pp. 511-518, 1986.
20.M.H.Mulazimoglu, R.A.L.Drew and J.E.Druzleski, The effects of strontium on the electrical resistivity and conductivity of aluminum-silicon alloys, Metall. Trans. 18A, pp. 941-947, 1981.
21.S.Shivkumar, C.Keller and D.Apelian, Aging behavior in Al-Si-Mg alloys, AFS Trans., pp905-911, 1990.
22.S.Shivkumar, S.Ricci, Jr. and D.Apelian, Influence of Solution Parameters and Simplified Supersaturation Treatments on Tensile Properties of A356 Alloy, AFS Trans., vol. 18, pp. 913-922, 1990.
23.L.F.Mondolfo, Aluminum Alloys: Structure and Properties, London, Butterwordths and Co., Ltd., p. 534, 1976.
24.A.Couture, Iron in aluminum casting alloys-a literature survey, AFS Int. Cast Metals J.,pp. 9-17, 1981.
25.G.Gustafsson, T.Thorvaldsson and G.L.Dunlop, The influence of Fe and Cr on the microstructure of casting alloys, Metall. Trans. 17A, pp. 45-52, 1986.
26.L.F.Mondolfo, Aluminum Alloys: Structure and Properties, London, Butterwordths and Co., Ltd., p. 760, 1976.
27.Blanc.C. and Mankowski, G. Corros. Sci.,39 ,p. 949, 1997.
28.Ch.Blanc., Y.Roques and G.Mankowski, Application of phase interformetric microscopy to studies of the bshavior of coarse intermetallic particles in 6056 aluminum alloy, Corrosion Sci., vol. 40, No. 6, pp. 1019-1035, 1998.
29.E.Brillas, P.L.Cabot, F.Centellas, J.A.Garrido, E.Perez and R.M.Rodriguez, Electrochemical oxidation of high-purity and homogeneous Al-Mg alloys with low Mg content.
30.應力腐蝕機理, 喬利杰, 王燕斌及褚武揚著, 科學出版社, 北京, 35-67頁, 1993.
31.M.O.Speidel, Current understanding of stress corrosion crack growth in aluminum alloys,The theory of stress corrosion cracking in alloys, Ed. By Dr.J.C. Scully, NATO, Brussels, p. 333, 1971.
32.E.H.Hollingsworth and H.Y.Hunsicker, Metals Handbook, vol. 13, Corrosion, 9th ed., ASM International, Metals Park, OH, p. 590, 1987.
33.Denny A. Jones.,Principal and prevention of corrosion, 2nd ed., pp. 337-338, 1996.
34.A.J.Sedriks, J.A.S. Green and D.L.Novak, On the chemistry of the solution at tips of stress corrosion cracks in Al alloys, Corrosion-NACE, vol. 27, pp. 198-202.
35.J.K.Park and A.J.Ardell, Effect of retrogression and reaging treatments on the microstructure of Al-7075-T651, Metall. Trans. A,vol. 15A, pp. 1531-1543, 1984.
36.R.K.Viswanadham, T.S.Sun and J.A.S. Dreen, Grain boundary segregation in Al-Zn-Mg alloys-implications to stress corrotion cracking, Metall. Trans., vol. 11A, pp. 85-89,1980.
37.G.M.Scamans, N.J.H. Holroyd and C.D.S. Tuck, The role of magnesium segregation in the untergrainular stress corrosion cracking of aluminum alloys, Corrosion Sci., vol. 27, pp. 329-347, 1987.
38.F.E.Watkinson and J.C.Scully, The stress corrosion cracking of a high purity Al-6Zn-3Mg alloy, Corrosion Sci., vol. 12, pp. 905-924, 1972.
39.S.L.Pyun, T.S.Suh and H.P.Kim, Microstructural dependence of stress corrosion cracking behavior in commercial Al-Zn-Mg-Cu alloy(AA7075), Werkst. and Korros., vol. 38, pp. 129-134, 1987.
40.T.C.Tsai and T.H.Chuang, Atmospheric stress corrosion cracking of a superplastic 7475 aluminum alloy, Metall. Trans., in Press, 1996.
41.P.Doig and J.W.Edington, Influence of precipitates free zones on the stress corrosion susceptibility of a Al-5.9%Zn-3.2%Mg alloy, Corrosion-NACE, vol. 31, pp. 347-352, 1975.
42.M.H.Mulazimoglu, R.A.L.Drew and J.E.Druzleski, Electrical conductivity of aluminum-rich Al-Si-Mg alloys, J. Mat. Sci. letter8, 8, pp. 297-300,1989.
43.Y.H.Tan and S.L.Lee, Correlation between microstructure and mechanical properties of A357 aluminum alloys containing beryllium and iron, chaper 5, pp.1, 1995.
44.W.Stephen Tait, Ph.D., An introduction to electrochemical corrosion testing for practicing engineers and scientists, pp. 38-40, 1994.
45.Denny A. Jones.,Principal and prevention of corrosion, 2nd ed., pp. 88, 1996.
46.Denny A. Jones.,Principal and prevention of corrosion, 2nd ed., pp. 266-268, 1996.
47.D.O.Sprowls, Metalls Handbook, vol. 13, Corrosion, 9th ed., ASM International, Metals Park, OH, p. 263, 1987.
48.Denny A. Jones.,Principal and prevention of corrosion, 2nd ed., pp. 524, 1996.