跳到主要內容

簡易檢索 / 詳目顯示

研究生: 楊上賦
Shang-Fu Yang
論文名稱: 白光 LED 老化致藍光漏出與其抑制之研究
The Study of Blue Leaking Blocker in Aged Phosphor Converted White LEDs
指導教授: 楊宗勳
Tsung-Hsun Yang
孫慶成
Ching-Cherng Sun
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 84
中文關鍵詞: 白光發光二極體老化藍光漏出抑制感溫變色材料
外文關鍵詞: White LED, Aging, Blue light leakage blocker, Thermochromic materials
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,為了解決白光 LED 在老化過程中,螢光粉因熱衰導致藍光漏出的問題,摻入了隨溫度變化而產生變色效果的感溫材料在 LED 封裝上,目的在螢光粉溫度過高時,能及時產生變色效果來吸收漏出的藍光。
    在實驗中測試與分析多種不同的感溫材料,以及利用熱模擬來預測LED 內部溫度分佈,適當的修改找出最佳的感溫材料幾何外型及位置,並比較有無使用感溫材料的結果差異。


    In this thesis, we added the thermochromic materials into the pcW-LED to solve the blue light leakage during the pcW-LED aging process. The thermochromic materials could change their color and absorb the leaking blue light immediately when the temperature of the phosphor was too high.
    Furthermore, to begin with, we measured and analyzed several different materials in the experiment. Also, we predicted the temperature distribution inside the LED by applying thermal simulation in order to find the best location and shapes of the materials. Finally, we compared the result of the LED which thermochromic materials was applied with the LED without thermochromic materials to see if there were significantly different.

    摘要 I Abstract II 致謝 III 目錄 V 圖索引 VIII 表索引 XIII 第一章 緒論 1 1-1 LED 發展背景 1 1-2 研究動機 5 1-3 論文大鋼 7 第二章 基本原理 8 2-1 引言 8 2-2 LED 發光原理 8 2-3 YAG:CE3+ 螢光粉原理 9 2-3-1 YAG:Ce3+ 能階結構 11 2-4 感溫材料變色原理 12 2-5 LED 熱效應之頻譜分析 14 2-5-1 藍光 LED 之熱效應 14 2-5-2 YAG 螢光粉之熱效應 17 第三章 LED 快速老化過程分析與實驗架構 19 3-1 前言 19 3-2 LED 壽命定義與量測 19 3-3 LED 加速老化漏藍光與半導體特性 21 3-4 加速老化實驗架構 24 3-5 LED 加速老化之熱模擬 25 第四章 螢光粉受熱藍光漏出之抑制方法與分析 28 4-1 前言 28 4-2 感溫變色材料介紹 28 4-2-1 感溫水性油墨120°C、150°C和170°C 28 4-2-2 聚乙烯吡咯烷酮 (Polyvinylpyrrolidone, PVP) 30 4-2-3 奈米纖維素材料 (Nanocellulose) 32 4-3 抑制藍光之封裝形式分析 34 4-3-1 將150°C 與 170°C 摻入 LED 之封裝 34 4-3-2 PVP 與 LED 之封裝 36 4-3-3 奈米纖維素材料 D 之 LED 封裝 42 4-3-4 奈米纖維素材料 A 之 LED 封裝 48 第五章 結論 56 參考文獻 58 中英名詞對照表 66

    [1] H. J. Round, “A note on Carborundum,” Electrical Word 49, 309 (1907).
    [2] N. J. Holonyak and S. F. Bevaqua, “Coherent (visible) light emission from Ga(As1–xPx) junctions,” Appl. Phys. Lett. 1, 82-83 (1962).
    [3] S. Nakamura, M. Senoh, and T. Mukai, “High-power InGaN/GaN double-heterostructure violet light-emitting diodes,” Appl. Phys. Lett. 62, 2390 (1993).
    [4] S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett. 64, 1687-1689 (1994).
    [5] S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, “High-brightness InGaN blue, green, and yellow light-emitting diodes with quantum well structures,” Jpn. J. Appl. Phys. 34, 797-799 (1995).
    [6] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Room-temperature continuous-wave operation of InGaN multi-quantum-well structure laser diodes,” Appl. Phys. Lett. 69, 4056 (1996).
    [7] S. Nakamura and G. Fosol, The Blue Laser Diode (Springer, Berlin, 1998)
    [8] Liu, Muqing, Bifeng Rong, and Huub WM Salemink, “Evaluation of LED application in general lighting,” Opt. Eng. 46, 074002-074002 (2007).
    [9] A. Zukauskas, M. Shur, and R. Gaska, Introduction to Solid-State Lighting (Wiley, New York, 2002).
    [10] E. F. Schubert and K. K. Jong., “Solid-state light sources getting smart.” Sci. 308, 1274-1278 (2005).
    [11] A. Žukauskas, R. Vaicekauskas, F. Ivanauskas, R. Gaska, and M. S. Shur, “Optimization of white polychromatic semiconductor lamps,” Appl. Phy. Lett. 80, 234-236 (2002).
    [12] J. Tsao, “Solid-state lighting: lamps, chips, and materials for tomorrow,” Circuits and Devices Magazine, IEEE 20, 28-37 (2004).
    [13] S. W. Brown, C. Santana, and G. P. Eppeldauer, “Development of a tunable LED-based colorimetric source,” J. Res. Natl. Inst. Stand. Technol. 107, 363-371 (2002).
    [14] M.R. Krames, O.B. Shchekin, R. Mueller-Mach, G.O. Mueller, L. Zhou, G. Harbers and M.G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” J. Display Technol. 3, 160-175 (2007).
    [15] M. Liu and B. Rong, “Evaluation of LED application in general lighting,” Opt. Eng. 46, 1-6 (2007).
    [16] Cree, http://www.cree.com/.
    [17] G. Wyszecki, and W. S. Stiles. Color science (Wiley, New York, 1982).
    [18] K. Sagawa and K. Takeichi, “Spectral luminous efficiency functions in the mesopic range,” J. Opt. Soc. America A 3, 71-75 (1986).
    [19] L. T. Sharpe, A. Stockman, W. Jagla and H. Jägle, “A luminous efficiency function, V*(λ), for daylight adaptation,” J. Vis. 5, 3 (2005).
    [20] A. Zauskas, F. Ivanauskas, R. Vaicekauskas, M. S. Shur, and R. Gaska, “Optimization of multichip white solid state lighting source with four or more LEDs,” Proc. SPIE 4445, 148-155 (2001).
    [21] T. F. McNulty, B. Lake, D. D. Doxsee, S. Hills, and J. W. Rose, “UV reflector and UV-based light source having reduced UV radiation leakage incorporating the same,” U. S. Patent 6,686,676 (2004).
    [22] A. A. Setlur, A. M. Srivastava, H. A. Comanzo, and D. D. Doxsee, “Phosphor blends for generating white light from near-UV/blue light-emitting devices,” U. S. Patent 6,685,852 (2004).
    [23] 陳靜儀,矽酸鹽螢光粉用於白光LED之光學模型,國立中央大學光電科學研究所碩士論文,中華民國九十七年。
    [24] 陳鶴祥,分層雙色白光LED封裝效率及色彩表現之研究,國立中央大學光電科學研究所碩士論文,中華民國一百零一年。
    [25] 鄭翰翔,白光LED加速老化之光輻射特性之研究,國立中央大學光電科學研究所碩士論文,中華民國一百零三年。
    [26] X. F. Tang , W. J. Xie , H. Li , W. Y. Zhao , Q. J. Zhang and M. Niino, "Thermally stable luminescence of KSrPO4: Eu2+ phosphor for white light UV light-emitting diodes," Appl. Phy. Lett. 90, 151108-151108 (2007).
    [27] B. K. Park, H. K. Park, J. H. Oh, J. R. Oh, and Y. R. Do, “Selecting morphology of Y3Al5O12: Ce3+ phosphors for minimizing scattering loss in the pc-LED package,” J. Electrochem. Soc. 159, J96-J106 (2012).
    [28] Y. Q. Li, N. Hirosaki, R. J. Xie, T. Takeda and M. Mitomo, “Yellow-orange-emitting CaAlSiN3: Ce3+ phosphor: structure, photoluminescence, and application in white LEDs,” Chem. Mater. 20, 6704-6714 (2008).
    [29] 吳信美,白光發光二極體色彩表現穩定技術之研究,國立中央大學光電科學研究所碩士論文,中華民國一百年。
    [30] I. Jaadane, P. Boulenguez, S. Chahory, S. Carré, M. Savoldelli, L. Jonet, F. Behar-Cohen, C. Martinsons and A. Torriglia, “Retinal damage induced by commercial light emitting diodes (LEDs),” Free Radi. Bio. Med. 84, 337-384 (2015).
    [31] W. K. Noell, V. S. Walker, B. S. Kang and S. Berman, “Retinal damage by light in rats,” Invest. Ophthalmol. 5, 450-473 (1966).
    [32] J. R. Sparrow, K. Nakanishi and C.A. Parish, “The lipofuscin fluorophore A2E mediates blue light–induced damage to retinal pigmented epithelial cells,” Invest. Ophthalmol. Vis. Sci. 41, 1981-1989 (2000).
    [33] E. F. Schubert, Light Emitting Diode (Cambridge University Press, Cambridge, 2003).
    [34] 郭浩中、賴芳儀和郭守義,LED 原理與應用,五南出版有限公司,民國九十八年。
    [35] 劉如熹、劉宇桓,發光二極體用氧氮螢光粉介紹,全華圖書股份有限公司,中華民國九十五年。
    [36] J. Gracia, L. Seijo, Z. Barandiaran, D. Curulla, H. Niemansverdriet, and W. van Gennip, ”Ab initio calculations on the local structure and the 4f–5d absorption and emission spectra of Ce3+-doped YAG,” J. Lumin. 128, 1248-1254 (2008).
    [37] Y. Shimizu, K. Sakano, Y. Noguchi, and T. Moriguchi, “Light emitting device having a nitride compound semiconductor and a phosphor containing a garnet fluorescent material,” U. S. Patent 5,998,925 (1999).
    [38] Nichia Corporation, http://www.nichia.co.jp/en/about_nichia/index.html.
    [39] 現代閱讀, http://www.readit.com.cn/m/jkys/m/27265.shtml
    [40] 崇裕科技, http://www.colorchange.com.tw/index.php/tw/
    [41] K. Senga, and M. Ito, “Thermochromic pigment material which has a microcapsular form having non-round particle cross section and has a thermochromic material enclosed in the microcapsules,” U.S. Patent 6,669,765 ( 2003).
    [42] C. Fernández-Valdivielso, I.R. Matías, and F.J. Arregui, “Simultaneous measurement of strain and temperature using a fiber Bragg grating and a thermochromic material,” Sens. Actuators A 101, 107-116 (2002).
    [43] D. A. Newman, Semiconductor Physics and Devices (McGraw-Hill, Boston, 1997).
    [44] B. E. A. Saleh, and M. C. Teich, Fundamentals of photonics (Wiley, New York, 1991).
    [45] 黃瑞琳,多激發光波長與溫度效應之螢光粉光學模型之研究,國立中央大學光電科學研究所碩士論文,中華民國一百零三年。
    [46] D. J. Robbins, “On predicting the maximum efficiency of phosphor systems excited by ionizing radiation.” J. Electrochem. Soc. 127, 2694-2702 (1980).
    [47] D. J. Robbins, B. Cockayne, J. L. Glasper, and Lent B, “The Temperature Dependence of Rare‐Earth Activated Garnet Phosphors I. Intensity and Lifetime Measurements on Undoped and Ce‐Doped,” J. Electrochem. Soc. 126, 1213-1220 (1979).
    [48] D. J. Robbins, B. Cockayne, J. L. Glasper, and Lent B, “The effects of crystal field and temperature on the photoluminescence excitation efficiency of Ce3+ in YAG,” J. Electrochem. Soc. 126, 1550-1555 (1979).
    [49] D. J. Robbins, B. Cockayne, J. L. Glasper, and Lent B, “The relationship between concentration and efficiency in rare earth activated phosphors,” J. Electrochem. Soc. 126, 1556-1563 (1979).
    [50] 劉瑋瑋,白光LED之螢光粉熱衰探討,國立中央大學光電科學研究所碩士論文,中華民國一百年。
    [51] V. Bachmann, C. Ronda, and A. Meijerink, “Temperature quenching of yellow Ce3+ luminescence in YAG:Ce,” Chem. Mater. 21, 2077-2084 (2009).
    [52] N. R. Taskar, R. N. Bhargava, J. Barone, V. Chhabra, V. Chabra, D. Dorman, A. Ekimov, S. Herko, and B. Kulkarni, “Quantum-confined-atom-based nanophosphors for solid state lighting,” Proc. SPIE 5187, 133-141 (2004).
    [53] R. Mueller-Mach, G. Mueller, M. Krames, and T. Trottier, “High-power phosphor-converted light-emitting diodes based on III-nitrides,” IEEE J. Sel. Topics Quantum Electron. 8, 339-345 (2002).
    [54] R. Mueller-Mach, G. O. Mueller, and M. R. Krames, “Phosphor materials and combinations for illumination-grade white pcLEDs,” Proc. SPIE 5187, 115-122 (2004).
    [55] J. D. Bullough, ASSIST recommends:LED Life for General Lighting. (Lighting Research Center, Ransselaer Polytechnic Institute, 2006).
    [56] IESNA, LM80-08 Approved Method for Measuring Lumen Maintenance of LED Light Source (New York, 2008).
    [57] Yoshida, Makoto, and Paras N. Prasad, “Fabrication of channel waveguides from sol-gel-processed polyvinylpyrrolidone/SiO2 composite materials,” Appl. Opt.35, 1500-1506 (1996).

    QR CODE
    :::