| 研究生: |
許育瑄 Yu-hsuan Hsu |
|---|---|
| 論文名稱: |
藉由非抗性模式細菌對鎘之攝取機制探討量子點的生態毒性潛勢 Probing the Potential Ecotoxicity of Quantum Dots through the Investigation of the Microbial Cadmium Uptake Mechanism |
| 指導教授: |
林居慶
Chu-ching Lin |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程研究所 Graduate Institute of Environmental Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 127 |
| 中文關鍵詞: | 量子點 、胞外化學物種組成 、原核微生物 、鎘攝取機制 、微生物毒性 |
| 外文關鍵詞: | quantum dots (QDs), extracellular chemical speciation, prokaryote, mechanism of Cd(II) uptake, microbial toxicity |
| 相關次數: | 點閱:17 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
奈米科技被譽為是二十一世紀最重要的科技之一,其蓬勃發展的結果雖可對各產業帶來劃時代的革命,但同時也免不期然的將會讓這些對生態造成何種影響仍不明確的新興物質排入環境中,使其發展的背後仍有隱憂。因此,了解奈米材料的傳輸、宿命及毒性,甚至更進一步地研究這類物質會對生態及人類健康帶來的衝擊為何,對於奈米科技的永續發展將極有助益,而探究人造奈米顆粒與微生物之間的相互作用則可視為推估這類材料潛在生態風險的第一步。然而,近期文獻雖已指出含鎘量子點在風化過程中,會因為鎘離子的溶出而對微生物產生制菌性或殺菌性的毒性效應,但文獻對於胞外化學物種組成在過程中如何影響量子點最後毒性作用的探討仍相當缺乏。有鑒於此,為釐清一般不具鎘抗性基因的原核細胞的鎘攝取機制,本研究利用革蘭氏陰性菌 Escherichia coli K-12 (ATCC 25404)為模式生物,以其存活率多寡做為鎘攝入的指標,在操縱試驗培養液化性的狀態下,探討胞外化學物種組成對於含鎘量子點所造成的微生物毒性之影響,並藉此推論及評估量子點潛在的生態衝擊程度。實驗結果證實原先設定的假說,即「溶解鎘主要以自由型態的鎘離子Cd2+進入菌株細胞中,且細胞對鎘的攝取過程主要依賴主動運輸此等機制」。這些結果意味著當水相系統維持在以自由態的鎘離子為優勢物種時,量子點將有可能對生態帶來最大的毒性衝擊。
Recent advances in nanotechnology have created numerous and promising applications in all sectors of society; as a result, large scale developments of engineered nanomaterials (ENMs) have increased the likelihood of the release of these novel materials to the environment. Yet, the behavior of these nanomaterials in the environment is still poorly understood, thus raising the concerns of their potential ecological health risks. Given that microbes are the foundation of many ecosystems, a better understanding of the factors that control the microbial toxicity of ENMs is crucial for their sustainable use. To date, available data have indicated that toxicity of quantum dots (QDs) to bacteria is predominantly attributed to the release of toxic inorganic ions, in particular metal species, from weathered QD-cores. Hence, extracellular metal speciation is considered to play an important role in determining the ultimate toxicity of QDs towards microbial cells. In this study, we conducted exposure experiments to investigate the importance of cadmium (Cd) speciation in toxicity to pure cultures of Escherichia coli K-12 (ATCC 25404), a known Gram-negative strain lacking metal resistance czc genes in its genome and thus can be used as a model organism to represent generic non-resistant bacterial cells. Variable chloride chemistry experiments were carried out to modify Cd(II) speciation in assay media, and cell death or growth inhibition was used as an indicator of toxicity. Results show that the toxicity of Cd decreased along the chloride gradient where the severest growth inhibition occurred at the lowest salinity. Under the experimental conditions, inhibition was not a function of the total Cd(II) concentration but strongly correlated with free Cd2+ concentration. In addition, when strong chelating agents such as citrate and EDTA were supplemented to the assay medium, the Cd2+ concentrations were also modulated, resulting in reduced deleterious effects. As such, Cd toxicity to non-czc-mediated Cd resistant bacteria seemed to be explained by the free ion activity model (FIAM). We further examined if energy dependence of Cd uptake was required by strain K-12. Interestingly, differential viability was not observed when starved cells were exposed to media containing Cd(II) and variable chloride concentrations, suggesting that active transport may be the underlying uptake mechanism of Cd in this strain. Together, these results suggest that Cd toxicity to non-resistant bacterial cells is directly proportional to the uncomplexed, free Cd activity in solution, and uptake of Cd may be mediated via an energy-dependent transport system. Accordingly, on the basis of the predictions from the FIAM, these results also suggest that except for acidic and oligotrophic environments, under circumneutral and alkaline conditions cadmium-based QDs may not pose a significant threat to the ecosystem.
1. Adams, L. K., D. Y. Lyon, and P. J. Alvarez, “Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions”, Water Res, vol. 40, pp. 3527-3532,(2006).
2. A. E. Martell and R. M. Smith, “Critically Selected Stability Constants of Metal Complexes Database”, NIST,(2004).
3. Ahmed, F., and D. F. Rodrigues, “Investigation of acute effects of graphene oxide on wastewater microbial community: a case study”, J Hazard Mater, vol. 256-257, pp. 33-39,(2013).
4. Alivisatos, A. P., W. Gu, and C. Larabell, “Quantum dots as cellular probes”, Annu Rev Biomed Eng, vol. 7, pp. 55-76,(2005).
5. American Society for Testing and Materials. 2006. Standard terminology relating to nanotechnology. E 2456–06. West Con-shohocken, PA.
6. Anderson D M, Morel F M M. “Copper sensitivity of Gonyaulax tamarensis”. Limnol Oceanogr, 23: 283–295,(1978).
7. Bagalkot V, Zhang L, Levy-Nissenbaum E, Jon S, Kantoff PW, Langer R, Farokhzad OC. “Quantum dot- aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer”. Nano Lett, 7: 3065-3070,(2007).
8. Becerra-Castro, C., P. Kidd, M. Kuffner, A. Prieto-Fernandez, S. Hann, C. Monterroso, A. Sessitsch, W. Wenzel, and M. Puschenreiter, “Bacterially induced weathering of ultramafic rock and its implications for phytoextraction”, Appl Environ Microbiol, vol. 79, pp. 5094-5103,(2013).
9. Benoit, J. M., C. C. Gilmour, and R. P. Mason, “Aspects of bioavailability of mercury for methylation in pure cultures of Desulfobulbus propionicus (1pr3)”, Appl Environ Microbiol, vol. 67, pp. 51-58,(2001).
10. Brownlee, B. G., P. D. Josephy, and N. J. Bunce, “Comparison of the AmesSalmonellaAssay and Mutatox Genotoxicity Assay for Assessing the Mutagenicity of Polycyclic Aromatic Compounds in Porewater from Athabasca Oil Sands Mature Fine Tailings”, Environmental Science & Technology, vol. 33, pp. 2510-2516,(1999).
11. Cabiscol E, Tamarit J, and R. J., “Oxidative stress in bacteria and protein damage by reactive oxygen species.”, AFSA Marine Biotechnology,(2000).
12. Caccavo, F., Jr., D. J. Lonergan, D. R. Lovley, M. Davis, J. F. Stolz, and M. J. McInerney, “Geobacter sulfurreducens sp. nov., a hydrogen- and acetate-oxidizing dissimilatory metal-reducing microorganism”, Appl Environ Microbiol, vol. 60, pp. 3752-3759,(1994).
13. Choi, O., K. K. Deng, N. J. Kim, L. Ross, Jr., R. Y. Surampalli, and Z. Hu, “The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth”, Water Res, vol. 42, pp. 3066-3074,(2008).
14. Crea, F., C. Foti, D. Milea, and S. Sammartano, “Speciation of cadmium in the environment”, Met Ions Life Sci, vol. 11, pp. 63-83,(2013).
15. Cullen, J. T., and M. T. Maldonado, “Biogeochemistry of cadmium and its release to the environment”, Met Ions Life Sci, vol. 11, pp. 31-62,(2013).
16. Dabbousi, B. O., J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe)ZnS Core−Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites”, The Journal of Physical Chemistry B, vol. 101, pp. 9463-9475,(1997).
17. Davies, J., “EPA and nanotechnology: oversight for the 21st century. Woodrow Wilson International Center for Scholars.”, Project on Emerging Nanotechnologies,(2007).
18. Deheyn, D. D., R. Bencheikh-Latmani, and M. I. Latz, “Chemical speciation and toxicity of metals assessed by three bioluminescence-based assays using marine organisms”, Environ Toxicol, vol. 19, pp. 161-178,(2004).
19. del Campo, R., P. Russi, P. Mara, H. Mara, M. Peyrou, I. P. de Leon, and C. Gaggero, “Xanthomonas axonopodis pv. citri enters the VBNC state after copper treatment and retains its virulence”, FEMS Microbiol Lett, vol. 298, pp. 143-148,(2009).
20. Derfus, A. M., W. C. W. Chan, and S. N. Bhatia, “Probing the Cytotoxicity of Semiconductor Quantum Dots”, Nano Letters, vol. 4, pp. 11-18,(2004).
21. Diao, J. J., D. Hua, J. Lin, H. H. Teng, and D. Chen, “Nanoparticle Delivery by Controlled Bacteria”, Journal of Nanoscience and Nanotechnology, vol. 5, pp. 1749-1751,(2005).
22. Domingos, R. F., D. F. Simon, C. Hauser, and K. J. Wilkinson, “Bioaccumulation and effects of CdTe/CdS quantum dots on Chlamydomonas reinhardtii - nanoparticles or the free ions?”, Environ Sci Technol, vol. 45, pp. 7664-7669,(2011).
23. Dubertret, B., P. Skourides, D. J. Norris, V. Noireaux, A. H. Brivanlou, and A. Libchaber, “In vivo imaging of quantum dots encapsulated in phospholipid micelles”, Science, vol. 298, pp. 1759-1762,(2002).
24. Derfus AM, Chan WCW, and Bhatia SN. “Probing the cytotoxicity of semiconductor quantum dots”. Nano Lett, 4: 11-18,(2004).
25. Erogbogbo, F., K. T. Yong, I. Roy, G. Xu, P. N. Prasad, and M. T. Swihart, “Biocompatible luminescent silicon quantum dots for imaging of cancer cells”, ACS Nano, vol. 2, pp. 873-878,(2008).
26. Errecalde, O., and P. G. C. Campbell, “Cadmium and Zinc Bioavailability to Selenastrum Capricornutum (Chlorophyceae): Accidental Metal Uptake and Toxicity in the Presence of Citrate”, Journal of Phycology, vol. 36, pp. 473-483,(2000).
27. Foster, P. L., and F. M. M. Morel, “Reversal of Cadmium Toxicity in a Diatom: An Interaction Between Cadmium Activity and Iron”, American Society of Limnology and Oceanography, vol. Vol. 27, No. 4 (Jul., 1982), pp. 745-752,(1982).
28. Fulladosa E, Villaescusa I, Martinex M, and Murat J-C. “Study of Cr(VI) and Cd(II) ions toxicity using the microtox bacterial bioassay”. In Environmental Chemistry- Green Chemistry and Pollutants in Ecosystems. Lichtfouse E, Schwarzbauer J, and Robert D, Eds. Springer; (2005).
29. Gao, X., W. C. Chan, and S. Nie, “Quantum-dot nanocrystals for ultrasensitive biological labeling and multicolor optical encoding”, J Biomed Opt, vol. 7, pp. 532-537,(2002).
30. Garcia, A., L. Delgado, J. A. Tora, E. Casals, E. Gonzalez, V. Puntes, X. Font, J. Carrera, and A. Sanchez, “Effect of cerium dioxide, titanium dioxide, silver, and gold nanoparticles on the activity of microbial communities intended in wastewater treatment”, J Hazard Mater, vol. 199-200, pp. 64-72,(2012).
31. Ge, Y., J. P. Schimel, and P. A. Holden, “Evidence for negative effects of TiO2 and ZnO nanoparticles on soil bacterial communities”, Environ Sci Technol, vol. 45, pp. 1659-1664,(2011).
32. Geiser, M., B. Rothen-Rutishauser, N. Kapp, S. Schürch, W. Kreyling, H. Schulz, M. Semmler, V. I. Hof, J. Heyder, and P. Gehr, “Ultrafine Particles Cross Cellular Membranes by Nonphagocytic Mechanisms in Lungs and in Cultured Cells”, Environmental Health Perspectives, vol. 113, pp. 1555-1560,(2005).
33. Green, M., and E. Howman, “Semiconductor quantum dots and free radical induced DNA nicking”, Chem Commun (Camb), pp. 121-123,(2005).
34. Han, M., X. Gao, J. Z. Su, and S. Nie, “Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules”, Nat Biotechnol, vol. 19, pp. 631-635,(2001).
35. Hardman, R., “A Toxicologic Review of Quantum Dots: Toxicity Depends on Physicochemical and Environmental Factors”, Environmental Health Perspectives, vol. 114, pp. 165-172,(2006).
36. Hassen A, Jerboui Z, Cherif M, Saidi N, Gharbi S, and Boudabous A. “Impact of heavy metals on the selective phenol-typical markers of Pseudomonas aeruginosa”. Microbial Ecol, 42: 99-107,(2001).
37. Hines, M. A., and P. Guyot-Sionnest, “Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals”, The Journal of Physical Chemistry, vol. 100, pp. 468-471,(1996).
38. Holden, P. A., J. P. Schimel, and H. A. Godwin, “Five reasons to use bacteria when assessing manufactured nanomaterial environmental hazards and fates”, Curr Opin Biotechnol, vol. 27, pp. 73-78,(2014).
39. Horst, A. M., A. C. Neal, R. E. Mielke, P. R. Sislian, W. H. Suh, L. Madler, G. D. Stucky, and P. A. Holden, “Dispersion of TiO(2) nanoparticle agglomerates by Pseudomonas aeruginosa”, Appl Environ Microbiol, vol. 76, pp. 7292-7298,(2010).
40. Hoshino, A., K. Fujioka, T. Oku, M. Suga, Y. F. Sasaki, T. Ohta, M. Yasuhara, K. Suzuki, and K. Yamamoto, “Physicochemical Properties and Cellular Toxicity of Nanocrystal Quantum Dots Depend on Their Surface Modification”, Nano Letters, vol. 4, pp. 2163-2169,(2004).
41. Hossain, S. T., and S. K. Mukherjee, “Toxicity of cadmium sulfide (CdS) nanoparticles against Escherichia coli and HeLa cells”, J Hazard Mater, vol. 260, pp. 1073-1082,(2013).
42. Hu, Z., K. Chandran, D. Grasso, and B. F. Smets, “Effect of Nickel and Cadmium Speciation on Nitrification Inhibition”, Environmental Science & Technology, vol. 36, pp. 3074-3078,(2002).
43. Jackson, B. P., D. Bugge, J. F. Ranville, and C. Y. Chen, “Bioavailability, toxicity, and bioaccumulation of quantum dot nanoparticles to the amphipod Leptocheirus plumulosus”, Environ Sci Technol, vol. 46, pp. 5550-5556,(2012).
44. Jaiswal, J. K., E. R. Goldman, H. Mattoussi, and S. M. Simon, “Use of quantum dots for live cell imaging”, Nat Meth, vol. 1, pp. 73-78,(2004).
45. Jaiswal, J. K., H. Mattoussi, J. M. Mauro, and S. M. Simon, “Long-term multiple color imaging of live cells using quantum dot bioconjugates”, Nat Biotechnol, vol. 21, pp. 47-51,(2003).
46. Jennings, V. L. K., M. H. Rayner-Brandes, and D. J. Bird, “Assessing chemical toxicity with the bioluminescent photobacterium (vibrio fischeri): a comparison of three commercial systems”, Water Research, vol. 35, pp. 3448-3456,(2001).
47. Kang, S., M. Pinault, L. D. Pfefferle, and M. Elimelech, “Single-walled carbon nanotubes exhibit strong antimicrobial activity”, Langmuir, vol. 23, pp. 8670-8673,(2007).
48. Karathanasis, A. D., “Subsurface Migration of Copper and Zinc Mediated by Soil Colloids”, Soil Science Society of America Journal, vol. 63, p. 830,(1999).
49. Kaweeteerawat, C., A. Ivask, R. Liu, H. Zhang, C. H. Chang, C. Low-Kam, H. Fischer, Z. Ji, S. Pokhrel, Y. Cohen, D. Telesca, J. Zink, L. Madler, P. A. Holden, A. Nel, and H. Godwin, “Toxicity of metal oxide nanoparticles in Escherichia coli correlates with conduction band and hydration energies”, Environ Sci Technol, vol. 49, pp. 1105-1112,(2015).
50. Kim, J. S., T. J. Yoon, K. N. Yu, B. G. Kim, S. J. Park, H. W. Kim, K. H. Lee, S. B. Park, J. K. Lee, and M. H. Cho, “Toxicity and tissue distribution of magnetic nanoparticles in mice”, Toxicol Sci, vol. 89, pp. 338-347,(2006).
51. Kim, S., B. Fisher, H. J. Eisler, and M. Bawendi, “Type-II quantum dots: CdTe/CdSe(core/shell) and CdSe/ZnTe(core/shell) heterostructures”, J Am Chem Soc, vol. 125, pp. 11466-11467,(2003).
52. Kirchner, C., T. Liedl, S. Kudera, T. Pellegrino, A. Munoz Javier, H. E. Gaub, S. Stolzle, N. Fertig, and W. J. Parak, “Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles”, Nano Lett, vol. 5, pp. 331-338,(2005).
53. Klaine, S. J., P. J. Alvarez, G. E. Batley, T. F. Fernandes, R. D. Handy, D. Y. Lyon, S. Mahendra, M. J. McLaughlin, and J. R. Lead, “Nanomaterials in the environment: behavior, fate, bioavailability, and effects”, Environ Toxicol Chem, vol. 27, pp. 1825-1851,(2008).
54. Kloepfer JA, Mielke RE, Nadeau JL. “Uptake of CdSe and CdSe/ZnS quantum dots into bacteria via purine-dependent mechanisms”. Appl Environ Microbiol, 71: 2548-2557,(2005).
55. Whitman, J. A., R. E. Mielke, and J. L. Nadeau, “Uptake of CdSe and CdSe/ZnS quantum dots into bacteria via purine-dependent mechanisms”, Appl Environ Microbiol, vol. 71, pp. 2548-2557,(2005).
56. Kotchey, G. P., S. A. Hasan, A. A. Kapralov, S. H. Ha, K. Kim, A. A. Shvedova, V. E. Kagan, and A. Star, “A natural vanishing act: the enzyme-catalyzed degradation of carbon nanomaterials”, Acc Chem Res, vol. 45, pp. 1770-1781,(2012).
57. Kumar SA and Khan MI. “Heterofunctional nanomaterials: fabrication, properties and applications in nanobiotechnology”. J Nanosci Nanotechnol, 10: 4142-4134,(2010).
58. Kwak, S.-Y., S. H. Kim, and S. S. Kim, “Hybrid Organic/Inorganic Reverse Osmosis (RO) Membrane for Bactericidal Anti-Fouling. 1. Preparation and Characterization of TiO2Nanoparticle Self-Assembled Aromatic Polyamide Thin-Film-Composite (TFC) Membrane”, Environmental Science & Technology, vol. 35, pp. 2388-2394,(2001).
59. L. Pettit, K. J. Powell, “The IUPAC Stability Constants Database”,(2001).
60. Lead, J. R., and K. J. Wilkinson, “Aquatic Colloids and Nanoparticles: Current Knowledge and Future Trends”, Environmental Chemistry, vol. 3, p. 159,(2006a).
61. Lead, J. R., and K. J. Wilkinson, “Environmental Colloids and Particles: Current Knowledge and Future Developments”, vol. 10, pp. 1-15,(2006b).
62. Li, K. G., J. T. Chen, S. S. Bai, X. Wen, S. Y. Song, Q. Yu, J. Li, and Y. Q. Wang, “Intracellular oxidative stress and cadmium ions release induce cytotoxicity of unmodified cadmium sulfide quantum dots”, Toxicol In Vitro, vol. 23, pp. 1007-1013,(2009).
63. Lin, S., G. Keskar, Y. Wu, X. Wang, A. S. Mount, S. J. Klaine, J. M. Moore, A. M. Rao, and P. C. Ke, “Detection of phospholipid-carbon nanotube translocation using fluorescence energy transfer”, Applied Physics Letters, vol. 89, p. 143118,(2006).
64. Lopes, C., H. Persat, and M. Babut, “Transfer of PCBs from bottom sediment to freshwater river fish: a food-web modelling approach in the Rhone River (France) in support of sediment management”, Ecotoxicol Environ Saf, vol. 81, pp. 17-26,(2012).
65. Lovric, J., S. J. Cho, F. M. Winnik, and D. Maysinger, “Unmodified cadmium telluride quantum dots induce reactive oxygen species formation leading to multiple organelle damage and cell death”, Chem Biol, vol. 12, pp. 1227-1234,(2005).
66. Lowry, G. V., K. B. Gregory, S. C. Apte, and J. R. Lead, “Transformations of nanomaterials in the environment”, Environ Sci Technol, vol. 46, pp. 6893-6899,(2012).
67. Lyon, D. Y., J. D. Fortner, C. M. Sayes, V. L. Colvin, and J. B. Hughes, “Bacterial Cell Association and Antimicrobial Activity of a C60 Water Suspension”, Environmental Toxicology and Chemistry, vol. 24, p. 2757,(2005).
68. Mahendra, S., H. Zhu, V. L. Colvin, and P. J. Alvarez, “Quantum Dot Weathering Results in Microbial Toxicity”, Environmental Science & Technology, vol. 42, pp. 9424-9430,(2008).
69. Marambio-Jones, C., and E. M. V. Hoek, “A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment”, Journal of Nanoparticle Research, vol. 12, pp. 1531-1551,(2010).
70. Maret, W., and J. M. Moulis, “The bioinorganic chemistry of cadmium in the context of its toxicity”, Met Ions Life Sci, vol. 11, pp. 1-29,(2013).
71. Maron, D. M., and B. N. Ames, “Revised methods for the Salmonella mutagenicity test”, Mutation Research/Environmental Mutagenesis and Related Subjects, vol. 113, pp. 173-215,(1983).
72. Mashino, T., D. Nishikawa, K. Takahashi, N. Usui, T. Yamori, M. Seki, T. Endo, and M. Mochizuki, “Antibacterial and antiproliferative activity of cationic fullerene derivatives”, Bioorganic & Medicinal Chemistry Letters, vol. 13, pp. 4395-4397,(2003).
73. Mashino, T., K. Okuda, T. Hirota, M. Hirobe, T. Nagano, and M. Mochizuki, “Inhibition ofE. coli growth by fullerene derivatives and inhibition mechanism”, Bioorganic & Medicinal Chemistry Letters, vol. 9, pp. 2959-2962,(1999).
74. Matsumura, Y., K. Yoshikata, S. i. Kunisaki, and T. Tsuchido, “Mode of Bactericidal Action of Silver Zeolite and Its Comparison with That of Silver Nitrate”, Appl Environ Microbiol, vol. 69, pp. 4278-4281,(2003).
75. Maurer-Jones, M. A., I. L. Gunsolus, C. J. Murphy, and C. L. Haynes, “Toxicity of engineered nanoparticles in the environment”, Anal Chem, vol. 85, pp. 3036-3049,(2013).
76. Medintz, I. L., H. T. Uyeda, E. R. Goldman, and H. Mattoussi, “Quantum dot bioconjugates for imaging, labelling and sensing”, Nat Mater, vol. 4, pp. 435-446,(2005).
77. Mews, A., A. Eychmueller, M. Giersig, D. Schooss, and H. Weller, “Preparation, characterization, and photophysics of the quantum dot quantum well system cadmium sulfide/mercury sulfide/cadmium sulfide”, The Journal of Physical Chemistry, vol. 98, pp. 934-941,(1994).
78. Michalet, X., F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics”, Science, vol. 307, pp. 538-544,(2005).
79. Mielke, R. E., J. H. Priester, R. A. Werlin, J. Gelb, A. M. Horst, E. Orias, and P. A. Holden, “Differential growth of and nanoscale TiO(2) accumulation in Tetrahymena thermophila by direct feeding versus trophic transfer from Pseudomonas aeruginosa”, Appl Environ Microbiol, vol. 79, pp. 5616-5624,(2013).
80. Mora-Sero I, Gimenez S, Fabregat-Santiago F, Gomez R, Shen Q, Toyota T, Bisquert J. “Recombination in quantum dot sensitized solar cells”. Acc Chem Res, 42: 1848-1857,(2009).
81. Morel, F. M. M., and J. G. Hering, “Principles And Applications Of Aquatic Chemistry”, Wiley-Interscience,(1993).
82. Mori, T., H. Takada, S. Ito, K. Matsubayashi, N. Miwa, and T. Sawaguchi, “Preclinical studies on safety of fullerene upon acute oral administration and evaluation for no mutagenesis”, Toxicology, vol. 225, pp. 48-54,(2006).
83. Morones, J. R., J. L. Elechiguerra, A. Camacho, K. Holt, J. B. Kouri, J. T. Ramirez, and M. J. Yacaman, “The bactericidal effect of silver nanoparticles”, Nanotechnology, vol. 16, pp. 2346-2353,(2005).
84. Murray, C. B., D. J. Norris, and M. G. Bawendi, “Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites”, Journal of the American Chemical Society, vol. 115, pp. 8706-8715,(1993).
85. Murray, C. B., S. Sun, W. Gaschler, H. Doyle, T. A. Betley, and C. R. Kagan, “Colloidal synthesis of nanocrystals and nanocrystal superlattices”, IBM Journal of Research and Development, vol. 45, pp. 47-56,(2001).
86. Najera, I., C.-C. Lin, G. A. Kohbodi, and J. A. Jay, “Effect of Chemical Speciation on Toxicity of Mercury toEscherichia coliBiofilms and Planktonic Cells”, Environmental Science & Technology, vol. 39, pp. 3116-3120,(2005).
87. Nel, A. E., L. Madler, D. Velegol, T. Xia, E. M. Hoek, P. Somasundaran, F. Klaessig, V. Castranova, and M. Thompson, “Understanding biophysicochemical interactions at the nano-bio interface”, Nat Mater, vol. 8, pp. 543-557,(2009).
88. Nizzetto, L., R. Gioia, J. Li, K. Borga, F. Pomati, R. Bettinetti, J. Dachs, and K. C. Jones, “Biological pump control of the fate and distribution of hydrophobic organic pollutants in water and plankton”, Environ Sci Technol, vol. 46, pp. 3204-3211,(2012).
89. Oliver, J. D., “Recent findings on the viable but nonculturable state in pathogenic bacteria”, FEMS Microbiol Rev, vol. 34, pp. 415-425,(2010).
90. Parkhust DL and Appelo CAJ. User’s guide to PHREEQC (version 2). A computer program for speciation, batch-reaction. U.S. Geological Survey Water-Resources Investigation Report 99-4259, 2000.
91. Priester, J. H., P. K. Stoimenov, R. E. Mielke, S. M. Webb, C. Ehrhardt, J. P. Zhang, G. D. Stucky, and P. A. Holden, “Effects of Soluble Cadmium Salts Versus CdSe Quantum Dots on the Growth of Planktonic Pseudomonas aeruginosa”, Environmental Science & Technology, vol. 43, pp. 2589-2594,(2009).
92. P. M. May, D. Rowland, E. Königsberger, and G. Hefter, “JESS, a Joint Expert Speciation System—IV: a large database of aqueous solution physicochemical properties with an automatic means of achieving thermodynamic consistency,” Talanta, vol. 81, no. 1-2, pp. 142–148,(2010).
93. Qi, L., and X. Gao, “Emerging application of quantum dots for drug delivery and therapy”, Expert Opin Drug Deliv, vol. 5, pp. 263-267,(2008).
94. Rathnayake, I. V., M. Megharaj, G. S. Krishnamurti, N. S. Bolan, and R. Naidu, “Heavy metal toxicity to bacteria - are the existing growth media accurate enough to determine heavy metal toxicity?”, Chemosphere, vol. 90, pp. 1195-1200,(2013).
95. Rodrigues, D. F., D. P. Jaisi, and M. Elimelech, “Toxicity of functionalized single-walled carbon nanotubes on soil microbial communities: implications for nutrient cycling in soil”, Environ Sci Technol, vol. 47, pp. 625-633,(2013).
96. Sapsford, K. E., T. Pons, I. L. Medintz, and H. Mattoussi, “Biosensing with Luminescent Semiconductor Quantum Dots”, Sensors, vol. 6, pp. 925-953,(2006).
97. Sass, J., “Nanotechnology's invisible threat: Small science big consequences”, NRDC Issue Paper,(2007).
98. Schaefer, J. K., and F. M. M. Morel, “High methylation rates of mercury bound to cysteine by Geobacter sulfurreducens”, Nature Geoscience, vol. 2, pp. 123-126,(2009).
99. Schaefer, J. K., S. S. Rocks, W. Zheng, L. Liang, B. Gu, and F. M. Morel, “Active transport, substrate specificity, and methylation of Hg(II) in anaerobic bacteria”, Proc Natl Acad Sci U S A, vol. 108, pp. 8714-8719,(2011).
100. Schaefer JK, Szczuka A, and Morel FMM. “Effect of divalent metals on Hg(II) uptake and methylation by bacteria”. Environ Sci Technol, 48: 3007-3013,(2014).
101. Schneider R, Wolpert C, Guilloteau H, Balan L, Lambert J, and Merlin C. “The exposure of bacteria to CdTe-core quantum dots: the importance of surface chemistry on cytotocivity”. Nanotechnology, 20: 225101,(2009).
102. Sigel, A., H. Sigel, and R. K. O. Sigel, “Cadmium: From Toxicity to Essentiality”, vol. 11,(2013).
103. Sondi, I., and B. Salopek-Sondi, “Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria”, J Colloid Interface Sci, vol. 275, pp. 177-182,(2004).
104. Steinberg, S. M., E. J. Poziomek, W. H. Engelmann, and K. R. Rogers, “A review of environmental applications of bioluminescence measurements”, Chemosphere, vol. 30, pp. 2155-2197,(1995).
105. Sun, T. Y., F. Gottschalk, K. Hungerbuhler, and B. Nowack, “Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials”, Environ Pollut, vol. 185, pp. 69-76,(2014)
106. Susumu, K., H. T. Uyeda, I. L. Medintz, T. Pons, J. B. Delehanty, and H. Mattoussi, “Enhancing the stability and biological functionalities of quantum dots via compact multifunctional ligands”, J Am Chem Soc, vol. 129, pp. 13987-13996,(2007).
107. Sunda WG, Guillard RR. “Relationship between cupric ion activity and the toxicity of copper to phytoplankton”. J Mar Res, 34: 511–529,(1976).
108. Taki, M., “Imaging and sensing of cadmium in cells”, Met Ions Life Sci, vol. 11, pp. 99-115,(2013).
109. Thevenod, F., and W. K. Lee, “Toxicology of cadmium and its damage to mammalian organs”, Met Ions Life Sci, vol. 11, pp. 415-490,(2013).
110. Tsao, N., T. Y. Luh, C. K. Chou, T. Y. Chang, J. J. Wu, C. C. Liu, and H. Y. Lei, “In vitro action of carboxyfullerene”, Journal of Antimicrobial Chemotherapy, vol. 49, pp. 641-649,(2002).
111. Tsao, N., T. Y. Luh, C. K. Chou, J. J. Wu, Y. S. Lin, and H. Y. Lei, “Inhibition of group A streptococcus infection by carboxyfullerene”, Antimicrob Agents Chemother, vol. 45, pp. 1788-1793,(2001).
112. Unrine, J. M., W. A. Shoults-Wilson, O. Zhurbich, P. M. Bertsch, and O. V. Tsyusko, “Trophic transfer of Au nanoparticles from soil along a simulated terrestrial food chain”, Environ Sci Technol, vol. 46, pp. 9753-9760,(2012).
113. Vera I. Slaveykova, Konstantin Startchev, and J. Roberts, “Amine- and Carboxyl- Quantum Dots Affect Membrane Integrity of Bacterium Cupriavidus metallidurans CH34”, Environmental Science & Technology,(2009).
114. Wei, W., A. Sethuraman, C. Jin, N. A. Monteiro-Riviere, and R. J. Narayan, “Biological Properties of Carbon Nanotubes”, Journal of Nanoscience and Nanotechnology, vol. 7, pp. 1284-1297,(2007).
115. Weng, K. C., C. O. Noble, B. Papahadjopoulos-Sternberg, F. F. Chen, D. C. Drummond, D. B. Kirpotin, D. Wang, Y. K. Hom, B. Hann, and J. W. Park, “Targeted tumor cell internalization and imaging of multifunctional quantum dot-conjugated immunoliposomes in vitro and in vivo”, Nano Lett, vol. 8, pp. 2851-2857,(2008).
116. Wang Y, Wiatrowski HA, John R, Lin C-C, Young LY, Kerkhof LJ, Yee N, and Barkay T. “Impact of mercury on denitrification and denitrifying microbial communities in nitrate enrichments of subsurface sediments”. Biodegradation, 24: 33-46,(2013).
117. Wilkinson KJ and Lead JR, eds. 2006. Environmental Colloids: Behaviour, Structure and Characterization. John Wiley, Chichester, UK.
118. Wolfrum, E. J., J. Huang, D. M. Blake, P.-C. Maness, Z. Huang, J. Fiest, and W. A. Jacoby, “Photocatalytic Oxidation of Bacteria, Bacterial and Fungal Spores, and Model Biofilm Components to Carbon Dioxide on Titanium Dioxide-Coated Surfaces”, Environmental Science & Technology, vol. 36, pp. 3412-3419,(2002).
119. Worden, C. R., W. K. Kovac, L. A. Dorn, and T. R. Sandrin, “Environmental pH affects transcriptional responses to cadmium toxicity in Escherichia coli K-12 (MG1655)”, FEMS Microbiol Lett, vol. 293, pp. 58-64,(2009).
120. Xu, X. H., W. J. Brownlow, S. V. Kyriacou, Q. Wan, and J. J. Viola, “Real-time probing of membrane transport in living microbial cells using single nanoparticle optics and living cell imaging”, Biochemistry, vol. 43, pp. 10400-10413,(2004).
121. Xu Y and Morel FMM. “Cadmium in Phytoplankton”. In Cadmium: From Toxicity to Essentiality, Vol. 11 of 'Metal Ions in Life Sciences', A. Sigel, H. Sigel, R. K. O. Sigel, Eds. Springer Science. Dortrecht,(2013).
122. Yang Y, Zhu H, Colvin VL, and Alvarez PJ. “Cellular and transcriptional response of Pseudomonas stutzeri to quantum dots under aerobic and denitrifying conditions”. Environ Sci Technol, 45: 4988-4994,(2011).
123. Yang, Y., J. Wang, Z. Xiu, and P. J. Alvarez, “Impacts of silver nanoparticles on cellular and transcriptional activity of nitrogen-cycling bacteria”, Environ Toxicol Chem, vol. 32, pp. 1488-1494,(2013).