跳到主要內容

簡易檢索 / 詳目顯示

研究生: 楊雲玠
Yun-Chieh Yang
論文名稱: 有機/無機混成製備奈米光學複合材料之研究
Optical properties of organic-inorganic hybrid thin film prepared by polymerization
指導教授: 陳暉
Hui Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
畢業學年度: 95
語文別: 中文
論文頁數: 65
中文關鍵詞: 光學複合材料
外文關鍵詞: The selective frequency of varied lights for nan
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究是以有機/無機材料來製備高/低折射率交互的多層光學薄膜,以二氧化鈦(TiO2)溶膠溶液與HEMA聚合物來製備具高折射率之有機無機溶液,¬而低折射率是以二氧化矽(SiO2)溶膠溶液與MMA聚合物來製備有機無機溶液,再以旋轉塗佈的方式製備具適當厚度之高低折射交互多層有機無機薄膜。
    藉由粒徑2.69 nm之TiO2溶膠溶液與HEMA行聚合反應,當TiO2 體積百分率為27%,即其固含量為62.9 wt%的固定比例混成聚合所得之薄膜,其折射率為1.75。另一方面,粒徑大小為14 nm之SiO2溶液與MMA行聚合反應,當SiO2體積百分比為30 %,即其固含量為53.3 wt%的固定的比例混成聚合所得之薄膜的折射率為1.44。將此兩種溶液經交互多層塗佈35層,經模擬計算可以得到在可見光波長範圍維持 90%以上的透明度,而在近紅外光波長的範圍,則能夠達到80%以上之遮蔽效果。實際塗佈測試結果顯示,也可得在可見光的範圍維持 80%以上透明度,而近紅外光的範圍可達60%以上的遮蔽效果。
    除此之外透過掃瞄式電子顯微鏡的觀察,有機無機混成所製備出的薄膜其表面皆相當的均勻同時也具有良好的成膜性,更重要的是以旋轉塗佈的方式所製備出的多層膜,確實能夠將膜厚控制在99%以上的精準性。


    The research is to prepare the nanoparticle solution and coat it on the building windows to absorb the selective frequency of varied lights (NIR) to decrease temperature of the building. High refractive index optical thin films were using coating solution prepared by polymerization of HEMA in TiO2 sol. On the other hands, low refractive index optical thin films were using coating solution prepared by polymerization of MMA in SiO2 sol. The multi-layer film was prepared by alternating spin-coating high and low refractive indices coating solution. When coating solution was prepared by polymerization of HEMA in TiO2 sol. which diameter was 2.69 nm and the volume percentage of TiO2 was 27, the refractive index was 1.75. On the other hands, when coating solution was prepared by polymerization of MMA in SiO2 sol which diameter was 14 nm and the volume percentage of SiO2 was 30, the refractive index was 1.44. The simulation showed that the transmittance of visible light was greater than 90% and that of near-infra-red light was lower than 30% when the 23 layers film by alternating this low and high refractive indices. The experiment result showed that the transmittance of visible light was greater than 90% and that of near-infra-red light was lower than 40% when the film with 23 layers by alternating spin-coating this low and high refractive indices coating solution.

    摘要 I 誌謝 Ⅲ 目錄 V 表目錄 Ⅶ 圖目錄 Ⅷ 第一章 前言----- 1 1-1 前言----- 2 1-1.1 高/低折射率有機無機材料的發展-----3 1-1.2 光學薄膜的應用-----12 1-1.3 光學薄膜的設計-----18 1-2 實驗目的-----21 第二章 實驗-----22 2-1 實驗藥品-----23 2-2 實驗儀器-----24 2-3 實驗步驟-----25 2-3.1 高折射率膜層的製備與流程-----25 2-3.2 低折射率膜層的製備與流程-----27 2-3.3 高低折射率交互多層薄膜的製備-----29 2-4 分析儀器-----31 第三章 結果與討論-----33 3-1玻璃基材及高分子材料的物性探討-----34 3-2以HEMA單體進行聚合製備高折射率薄膜----- 36 3-3以MMA聚合物製備低折射率薄膜的探討 ----- 40 3-4高低折射率交互多層薄膜的的光學性質-----43 3-4.1多層成膜11層及17層的設計及探討-----44 3-4.2 22層及23層多層膜的設計及探討-----48 3-4.3 34層及35層多層膜的設計及探討-----53 3-5 高折射率薄膜熱重損失分析-----58 第四章 結論-----61 參考文獻-----63

    1. 張光偉,化工資訊,第3期,36-45,1998。
    2. 許明發,郭文雄,“複合材料”,高立圖書有限公司,1998。
    3. 傅雅卿,“高折射率環氧樹脂之合成及其物性研究”,國立台灣大學材料科學與工程學研究所碩士論文,2001。
    4. 劉家桓,“紫外光硬化型壓克力/二氧化鈦奈米複合材料的製備”,淡江大學化學工程與材料科學系碩士論文,2003。
    5. T. Matsuda, J. Appl. Polym. Sci., 76, 50-54. , 2000.
    6. J. C. Seferis, Polymer Handbook, 3rded. Brandrup, J., Immergut,
    E. H., Eds., Wiley-Interscience: New York, 451-461, 1980.
    7. H. Dislich, Angew. Chem. Int. Ed. Engl, 18, 49-59, 1979.
    8. CRC Handbook of Chemistry and Physics, 81st. Weast, R. C. stle, M. J., Eds., CRC Press: Boca Raton, FL, 2000.
    9. 李正中,“薄膜光學與鍍膜技術”,藝軒圖書出版社,1999。
    10. S. A. Jenekhe, C. J. Yang, Chem. Mater. 6, 196-203, 1994.
    11. M. Yoshida, J. of Materials Science, 32, 4047, 1997.
    12. T. Matsuda, J. Appl. Polym. Sci., 76, 50-54, 2000.
    13. R. A. Gaudiana, H. G. Rogers, Macromolecules, 18, 1058-1068, 1985.
    14. B. Wang, A. Gungor, A.B. Brennan, D.E. Rodrignes, J.E. Mcgrath, G.L. Willkes, Polym. Prep. 32(3), 521, 1991.
    15. Y. Wei, R. Bakthavatchalam, D. Yang and C. K. Whitecar, Polym. Prep. 32(3), 503, 1991.
    16. C. J. T. Lanrry and B. K. Coltrain, Polym, Prep. Am. Chem. Soc. Div.
    Polym. Chem. 32(3), 514, 1991.
    17. L. A. David and G.W. Scherer, Polym. Prep. 23(3), 338, 1991.
    18. H. Dislich, Glastechn. Ber. 44, 1, 1971.
    19. J. D. Mackenzie, Y. J. Chung and Y. Hu, J. Non-Cryst. Soilds. 147, 271, 1992.
    20. B. Wang, G.L. Wilkes, J. C. Hedrick, S. C. Liptak and J.E. Mcgrath,
    Marcromolecules, 24, 3449, 1991.
    21. Y. Wei, R. Bakthavatchalam, D. Yang and C. K. Whitecar, Polym. Prep. 32(3),503, 1991.
    22. Y. Wei, D. Yang and L. Tang, J. Matr. Res. 8(5), 1143, 1993.
    23. S. Nakata, M. Kawata, M. A. Kakimoto and Y. Imaj, J. Polym. Sic. Part A: Polym. Chem. 31, 3425, 1993.
    24. 張育齊,“逆有機無機環氧樹脂-SiO2混成複合材料之合成”,國立台灣工業技術學院纖維技術工程系,1998。
    25. Y. G. Hsu 、謝炯勳,”PVA-SiO2 溶膠凝膠混成複合材料”,高分子研討會,87-88,1999。
    26. W. C. Chen , S. J. Lee, L. H. Lee, J. Mater.Chem.9, 2999-3003, 1999.
    27. L. H. Lee and W. C. Chen, Chem. Mater. 13.,1137-1142, 2001.
    28. C. C. Chang, W. C. Chen, J. Chem, Mater, 14, 4242-4248, 2002.
    29. K.H. Haas, H. Wolter, Current Opinion in Solid State and Materials Science, 4, 571-580 , 1999.
    30. 高宜孝、林唯芳、王立義,“有機無機混成光敏感性光導路材料之製備”,高分子研討會,2003。
    31. E. J. A. Pope, M. Asami, J. D. Mackenzie, J. Mater. Res., 4, 4, 1018-1026, 1989.
    32. W. F. Su, H. K. Yuan, ACS Polymer Preprints, 41(1), 575, 2000.
    33. P. N. Prasad, M. Yoshida, Chem. Mater. 8, 235, 1996.
    34. R. M. Davis, V. J. Nagpal, S. B. Desu, J. Mater. Res. 10, 12, 3068, 1995.
    35. H. R. Allcock, M. Olshavsky, Macromolecules, 28, 6188-6197, 1995.
    36. H. R. Allcock, M. Olshavsky, Macromolecles, 30, 4179-4183, 1997.
    37. R. A. Gaudiana, R. A. Minns, J.Macromol. Sci. Chem., A28 (9), 831-842, 1991.
    38. S. A. Jenekhe, C. J. Yang, Chem. Mater. 6, 196-203, 1994.
    39. S. Kohmoto, T. Okubo, M. Yamamoto, J.M.S.-Pure Appl. Chem. A35(11), 1819-1834, 1998.
    40. R. A. Minns, R. A. Gaudiana, J. Macromol. Sci., Pure Appl. Chem. A29 (1), 19-30, 1992.
    41. 鍾順雄,“Sol-gel法製備壓克力-奈米二氧化矽混成光學薄膜及其特性研究”,國立台北科技大學有機高分子研究所碩士論文,2004。
    42. 翁暢健,“壓克力/二氧化鈦複合材料的製備與性質研究”,中原大學化學系碩士論文,2002。
    43. NSTAR, “Reducing Cooling Loads Through Windows”,2001.
    44. C. Kittel, Introduction to Solid State Physics, Eighth Edition, ISBN 7-5025-7183-3.
    45. Ashcroft/Mermin, Solid State Physics, ISBN 981-243-864-5.
    46. A. Feldman, et al. J. Vac. Sci. Technol. A, 2969, 1986.
    47. X. Wang, H. Masumoto, Y. Someno, T. Hirai, Thin Solid Film, 338, 105-109,1999.
    48. Q. Zhang, J. Wang, G. Wu, J. Shen, S. Buddhudu, Mater Chem. Phys., 72, 56-59, 2001.
    49. C. Guan, C. L. Lu, Y. F. Liu, B.Yang, J. Appl. Polym. Sci., 102, 1631-1636, 2006.

    QR CODE
    :::