| 研究生: |
林棠雯 Danastri Lintang Pitaloka Tampubolon |
|---|---|
| 論文名稱: |
折射震測法之盲層P波與水平層界不確定性分析 Uncertainty Estimation of P Wave Velocity and Layer Boundaries Using Seismic Refraction with Synthetic Horizontal Layered Geological Models Including a Blind Layer |
| 指導教授: |
董家鈞
Jia-Jyun Dong 涂家輝 Chia- Huei Tu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 應用地質研究所 Graduate Institute of Applied Geology |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 154 |
| 中文關鍵詞: | 折射震測 、時距曲線 、不確定性 、合成案例 、正演模擬 |
| 外文關鍵詞: | Seismic refraction, Time-distance curve, Uncertainty, Synthetic case, Forward modeling |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
大地工程的可靠性與不確定性有關。降低不確定性將提高可靠性和降低風險。此外,評估折射震測法之處理過程是減少不確定性的基礎。折射震測法中的人為誤差是該方法中與不確定性相關的重要問題之一。本研究目的為減少折射震測法的不確定性。折射震測法需要兩個步驟來利用P 波波速的不同決定層與層之間的邊界。即根據時距曲線 (T-D 曲線) 選取初達波並將具有相同波速的資料合為一層。本研究利用了兩種合成地質模型的正演模擬結果,給出了各層的邊界和各層的 P 波速度。第一個模型由五層組成,速度隨深度增加(從上到下為Vp = 700 m/s、1100 m/s、1500 m/s、1800 m/s和2200 m/s),而第二個模型由六層組成,其中有一個盲層(Vp = 1000 m/s、1500 m/s、1700 m/s、1400 m/s、1800 m/s 和 2200 m/s)。根據七位操作員的挑選初達波結果,我們發現不管模型一和模型二,第一層具有高度的不確定性(模型一:11.2%,模型二:13.7%)。層跟層間的邊界的高不確定性及P波速度的低精確度也認為是在挑選初達坡過程中的人為誤差影響。在將相同波速資料合為一層的處理上,模型一第一層P波速度的不確定性較高(11.8%),而模型二的P波速度值精確度較低。盲層放大了不確定性,降低了精確度。從不同的初達波挑選結果,折射震測層析成像只能得到較淺層的資料。此外,與初達波挑選和分層處理相比,折射震測層析成像的不確定性較小。地層厚度數據有效降低了不確定性(7.1%),且P 波速度可以降低不確定性至1.7%(模型一)和3.5%(模型二)。地層厚度資料和波速資料有效地降低了分層處理的不確定性。然而,初達波挑選的不確定性仍然存在。此研究得到的地質模型可能與真實模型有很大的偏差。
Reliability in geotechnical engineering is related to uncertainty. Decreasing uncertainty will affect increasing reliability and low risk. Moreover, evaluating the seismic refraction method is fundamental to reducing uncertainty. Human error in seismic refraction is one of the important issues related to uncertainty in this method. The main research purpose is to evaluate seismic refraction and reduce uncertainty in seismic refraction. Two steps are essential for seismic refraction to determine the boundaries of different layers with different P wave velocity (Vp), picking first arrival data and grouping data into a unified layer with identical wave velocity based on the time-distance curve (T-D curve). This study utilized the forward modeling results of two synthetic geological models. The boundaries of layers (gently dip straight line) and the P wave velocity of each layer was given. The first model is made up of five layers, with velocity increasing with depth (Vp = 700 m/s, 1100 m/s, 1500 m/s, 1800 m/s, and 2200 m/s from top to bottom), while the second model is made up of six layers with a blind layer (Vp = 1000 m/s, 1500 m/s, 1700 m/s, 1400 m/s, 1800 m/s, and 2200 m/s). According to the pick results of seven operators, we discovered high uncertainty (11.2 %) in the first layer for Model 1 and (13.7%) for Model 2. High uncertainty in the boundary layer and low precision of the P wave velocity on Model 2 was also founded on human error in the first arrival picking processing. On the Grouping layer processing, high uncertainty of P wave velocity in the first layer (11.8 %) on the Model 1. However, low accuracy of the P wave velocity value on Model 2. The blind layer amplifies uncertainty and decreases accuracy. Based on different first arrival picking, Seismic refraction tomography will have the narrow zone of the boundary data. Moreover, the uncertainty of seismic refraction tomography is small compared with first arrival picking and grouping layer processing. Thickness data effectively reduces uncertainty (7.1%), and P wave velocity data can reduce uncertainty until (1.7 %) on Model 1 and (3.5 %) on Model 2. Thickness data and velocity data effectively reduce uncertainty in grouping layer processing. However, uncertainty from first arrival picking still exists. The analyzed geological model could have deviated significantly from the true model.
I. E. Stewart, J. R. Williams and C. S. Walker, "Seismic refraction in relation to geotechnical information for (road) construction contracts," Engineering Geology Special Publications, pp. 383-390, 1997.
M. J. Reynolds, An Introduction to Applied Environmental Geophysics, New York, 1997.
M. J. Ducan, "Factors of Safety and Reliability in Geotechnical Engineering," Journal Of Geotechnical and Geoenvironmental Engineering, pp. 307-316, 2000.
S. Lacasse and F. Nadim, "Risk and Reliability in Geotechnical Engineering," in International Conference on Case Histories in Geotechnical Engineering, Missouri, 1998.
A. Artimo, J. Makinen, R. Berg, C. Abert and V. Salonen, "Three-dimensional geologic modeling and visualization of the Virttaankangas aquifer, southwestern Finland," Hydrogeology Journal 11, vol. 11, no. 3, pp. 378-386, 2003.
F. Wellmann and G. Caumon, "3-D Structural geological models: Concepts, methods, and uncertainties," in Advance in Geophysics, vol. 59, Elsavier, 2018, pp. 1-121.
A. Fournier, K. Mosegaard, H. Omre, M. Sambridge and L. Tenorio, "Assessing Uncertainty in Geophysical Problem- Introduction," Geophysics , vol. 78, no. 3, pp. WB1-WB2, 2013.
O. Anomohanran, "Seismic Refraction Method : A Technique For Determining The Thickness Of Strarified Substratum," American Journal of Applied Science , vol. 10, no. 8, pp. 857-862, 2013.
M. Aziman, Z. A. M. Hazreek, A. T. S. Azhar and D. S. Haimi, "Compressive and Shear Wave Velocity Profiles using Seismic Refraction Technique," Journal of Physics, vol. 710, no. 1, 2016.
S. Chopra and K. Marfurt, "Cause and Appearance of Noise in Seismic Data Volumes," AAPG Explorer, 2014.
M. Senkaya and H. Karsil, "First Arrival Picking in Seimsic Refarction Data by Cross-Corelation Technique," in Congress of Balkan Geophysical Society, Budapest, Hungary, 2011.
C. Liu and J. M. Stock, "Quantitative Determination Of Uncertainty In Seismic Refraction Prospecting," Geophysics , vol. 58, no. 4, pp. 553-563, 1992.
M. Majdanski and M. Polkowski, "The Uncertainty of 2D Models Along Wide Angel Seismic Profiles," Pure and Applied of Geophysics, vol. 171, pp. 2277-2287, 2014.
D. J. White, "Two-dimensional seismic refractrion tomography," Geophysical Journal, pp. 223-245, 1989.
N. L. Anderson, D. E. Hedke and R. W. Knapp, "Forward Seismic Modeling- Application and Utility," Kansas Geological Survey , pp. 28-33, 19 August 2015.
J. Virieux, "P-SV wave propagation in heterogeneous media : Velocity-stress finite-difference method," Geophysics, vol. 51, pp. 889-901, 1986.
H. Che Ming, Uncertainty Estimation of Geological Models Using Markov Chain Random Field Analysis with Synthetic Geological Models, Taiwan: Master Thesis of National Central University, 2022.
C. Bates, D. Phillips and J. Hild, "Studies in P-Wave and S-Wave Seismics," 1992.
B. Banerjee and S. K. Gupta, "Hidden Layer Problem in Seismic Refraction Work," Geophysical Prospecting, vol. 23, pp. 642-652, 1975.
S. Foti, L. Sambuelli, V. Socco and C. Strobbia, "Experiment of joint acquisition of seismic refraction and surface wave data," Near Surface Geophysics , pp. 119-129, 2003.
"Engineering Geological Database for FSMIP ( EGDT)," National Center for Research on Earthquake Engineeing, 03 2018. [Online]. Available: http://egdt.ncree.org.tw/overview_eng.htm. [Accessed 2021 8 2022].
R. D. Stefano, F. Aldersons, E. Kissling, P. Baccheschi, C. Chiarabba and D. Giardini, "Automatic seismic phase picking and consistent observation error assessment: application to the Italian Seismicity," Geophysics International Journal, no. 165, pp. 121-134, 2006.
A. Guodarzi, S. Veisi and M. Omidvar, "A sparse solution for accurate seismic refraction arrival time selection," Arabian Journal of Geosciences, vol. 12, pp. 275-284, 2019.
M. Cox, "Static Correction for Seismic Reflection Surveys," Seciety of Exploration Geophysical , 1999.
M. Igboekwe and H. Ohaegbuchu, "Investigation into the weathering layer using up-hole method of seismic refraction," Journal of Geology and Mining Research, vol. 3, no. 3, pp. 73-86, 2011.
F. Haeni, Application of Seismic-Refaction Techniques to Hydrologic Studies, Departement of the Interior: US Geological Survey, 1988.
A. Al-Heety and Z. Shanshal, "Integration of seismic refraction tomography and electricalresistivity tomography in engineering geophysics for soilcharacterization," Arab Journal Geosciences, 2015.
J. Sheehan, W. Doll, D. Watson and W. Mandell, "Application of Seismic Refraction Tomography to Karst Cavities," publication USGS, pp. 29-32, 2005.
Departement Physics and Astronomy, "Intoduction to Measurenents & Error Analysis," October 2012. [Online]. Available: https://physics.unc.edu/wp-content/uploads/sites/218/2012/10/uncertainty.pdf. [Accessed 9 September 2021].
Y. H. Cha and C. H. Jo, "Water bottom seisimc refraction survey for engineering applications," in International Symposiun on the Fusion Technology of Geosystem Engineering, Seoul, Korea, 2003.
D. S. Parasnis, "Seismic method," in Principles of Applied Geophysics , Dordrecht, Springer, 1979, pp. 189-222.
S. Varma, C. M. P. P, T. Lin, F. Li, B. Hutchinson and K. J. Marfurt, "Pitfalls in seismic processing: part 2 velocity analysis sourced acquisition footprint," in SEG Annual Meeting, New Orleans, 2015.
Tesseral Geo Modeling Suite, User Manual, Alberta, Canada: Tesseral Technologies, 2017.
Geometrics , SeisImager/ 2D Manual Version 3.3, San Jose, USA : Geometrics , 2009 .
S. Begg, "Reliability of Expert Judgments and Uncertainty Assessments," in SPE Distinguished LEcture, 2010-2011, Australian School of Petroleum, University of Adelaide, 2010.
R. Schmoller, "Some Aspect Of Handling Velocity Inversion and Hidden Layer Problems in Seismic Refraction Work," Geophysical Prospecting, pp. 735-751, 1982.