跳到主要內容

簡易檢索 / 詳目顯示

研究生: 邱雅文
Ya-wen Chiu
論文名稱: 順丁烯亞醯胺高分子發光二極體:分子量與聚集傾向之研究
The Maleimide Copolymer Light-Emitting Diodes:Influence of the Polymer Molecular Weight and Aggregation Tendency
指導教授: 陳錦地
Chin-Ti Chen
吳春桂
Chun-Guey Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學學系
Department of Chemistry
畢業學年度: 95
語文別: 英文
論文頁數: 126
中文關鍵詞: 高分子發光二極體分子量聚集
外文關鍵詞: PLEDs, molecular weight, aggregation
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們成功地合成了一系列分子量相近的順丁烯亞醯胺共聚高分子衍生物 (M-PT8ML8-F8, PT8ML1-F8, PT1ML8-F8, PT8ML8-F1, M-PT8ML8-SP),其分子量從32700到52100。儘管沒有明顯的聚集證據,然而,藉由高分子主鏈上不同位置烷基鏈的長度縮短,的確可以增加高分子的玻璃轉移溫度(91-148 oC)。
    並且,我們也聚合出兩類(PT8ML8-F8與PT8ML8-SP),但各有高、中、低三種分子量的順丁烯亞醯胺共聚高分子。從熱性質的結果來看,玻璃轉移溫度和熱裂解溫度與這兩個高分子分子量的高低與並沒有一定的關係。但是,從不同分子量的PT8ML8-F8高分子發光元件量測的比較,我們發現隨著分子量的增加,亮度與效率都隨之減少。而且,從PT8ML8-F8的發光光譜圖,也可以觀察到隨著分子量的增加,螢光或電激發光都有紅位移的趨勢。從元件的電性量測可以讓我們更加地確定,對PT8ML8-F8共聚高分子而言,分子量越小越不容易聚集。共聚高分子薄膜螢光光譜與穿透式電子顯微鏡影像都支持高分子電激發光的定論。


    In this study, we successfully designed and synthesized a series of new maleimide-based copolymer with similar molecular weight (M-PT8ML8-F8, PT8ML1-F8, PT1ML8-F8, PT8ML8-F1 and PT8ML8-SP), their molecular weight is from 32700 to 52100. Even though no significant red-shifting spectra indicate the difference between those copolymers, however, through shortening the alkyl substituent chain length, enhancement of the glass-transition temperature (Tgs) is clearly achieved (91-148 oC). From the results of thermal analysis, the molecular weight do not affect both Tgs and decomposition temperatures of these maleimide copolymers (Tds). We have also fabricated polymer light-emitting diodes (PLEDs) of PT8ML8-F8 with different molecular weight. Comparing PT8ML8-F8 copolymers having different molecular weight, electroluminescence and power efficiency decrease with the increase of copolymer molecular weight. In addition, electroluminescence of PT8ML8-F8 showed red-shifting with the increase of the molecular weight. The PLED data implied that less aggregation of PT8ML8-F8 copolymer when its molecular weight is smaller. Thin film photoluminescence spectra and TEM images also support the PLED data.

    Table of Contents…………………………………………I List of Figures……………………………………………IV List of Tables……………………………………………VIII Appendix 1…………………………………………………IX Appendix 2…………………………………………XI Chinese Abstract…………………………………………XII English Abstract…………………………………………XIII CHAPTER ONE……………………………………………………1 INTRODUCTION…………………………………………………1 1.1 Historical Development………………………………1 1.2 Principle of Light-Emitting Polymers……………2 1.3 Aggregation Nature of the Light-Emitting Polymers…4 1.3.1 Influence of Molecular Architecture…………………5 1.3.2 Influence of Molecular Weight…………………14 1.4 Strategies to Suppress the Formation of Polymer Aggregation1…8 1.5 Keto Effect of Polyfluorene On PL and EL……………26 1.5.1 Nature of Keto Effect……………………………………26 1.5.2 Strategies to Depress Keto Defect……………………30 1.6 Research Motive…………………………………………………34 CHAPTER TWO…………………………………………………………………35 EXPERIMENT………………………………………………………35 2.1 Materials…………………………………………………35 2.2 Instruments………………………………………………35 2.2.1 Nuclear Magnetic Resonance Spectroscopy………35 2.2.2 Mass Spectrometer/Elemental Analyses…………35 2.2.3 Gel Permeation Chromatography……………35 2.2.4 UV-visible Spectrophotometer………………36 2.2.5 Photoluminescence Spectrophotometer…………36 2.2.6 Differential Scanning Calorimetry/Thermogravimetric Analysis…36 2.2.7 Miniature Fluorescence Lifetime Spectrometer (mini-τ)………………………….36 2.2.8 Cyclic Voltammetry………………………………………………………………..37 2.2.9 Atomic Force Microscopy/Transmission Electron Microscope…………………...37 2.2.10 AC2………………………………………………………………………………38 2.2.11 Fabrication and Characterization of PLED……………………………………..38 2.3 Synthesis and Characterization…………………………………………………………..48 2.3.1 Synthsis of maleimide-thiophene monomers……………………..…….…………39 2.3.1.a Synthesis of mleimide monomers…………………….……………………39 2.3.1.b Synthesis of thiophene monomers……………….………………………41 2.3.2 Synthesis of fluorene monomers……………………...……………………….46 2.3.3 Synthesis of spirobifluorene monomers………………...………………………48 2.3.4 Synthesis of maleimide copolymers………………………………………………50 CHAPTER THREE………………………………………………..………………………….53 RESULTS AND DISCUSSION………………………………………………………………53 3.1 Synthesis and Characterization of Maleimide Copolymers………………………………53 3.2 Characterization of Maleimide Copolymers……………………………………………...54 3.2.1 Absorption and Fluorescence Characterizations…………..………………………54 3.2.2 Redox properties…………………………………………………………………60 3.2.3 HOMO Energy Levels…………………………………………………………...65 3.2.4 Thermal Analysis………………………………..………………………………...67 3.2.4.a Differential Scanning Calorimetry…………………………………………67 3.2.4.b Thermal Gravimetric Analysis……………………………………………..70 3.2.5 Time-resolved Fluorescence Spectroscopy………………………………………..73 3.2.6 Morphology Study of AFM and TEM…………………………………………….76 3.3 Light Emitting Device Based on PT8ML8-F8 with Different Mw……………………..…80 CHAPTER FOUR…………………………………………………………………………….84 CONCLUSION……………………………………………………………………………….84 REFERENCE…………………………………………………………………………………85 APPENDIX 1: 1H, 13C NMR and MASS spectra………………………………………….…87 APPENDIX 2: Time-Resolved Fluorescence Spectroscopy………………………….103

    1. (a) A. Bernanose, M. Comte, P. Vouaux, J. Chim. Phys., 1953, 50, 64. (b) A. Bernanose, P. Vouaux, J. Chim. Phys., 1953, 50, 261. (c) A. Bernanose, J. Chim. Phys., 1955, 52, 396. (d) A. Bernanose, P. Vouaux, J. Chim. Phys., 1955, 52, 509.
    2. C. W. Tang, S. A. VanSlyke, Appl. Phys. Lett., 1987, 51, 913.
    3. J. H. Burroughes, D.D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackey, R. H. Friend, P. L. Burn, A. B. Holmes, Nature, 1990, 347, 539.
    4. R. H. Lee, H. F. Hsu, L. H. Chan, C. T. Chen, Polymer, 2006, 47, 7001.
    5. M. Surin, E. Hennebicq, C. Ego, D. Marsitzky, A. C. Grimsdale, K. Mullen, J. L. Bredas, R. Lazzaroni, P. Leclere, Chem. Mater., 2004, 16, 994.
    6. S. H. Wu, J. H. Chen, C. H. Shen, C. C. Hsu, C. C. Tsiang., J Polym Sci: Part A: Polym Chem, 2004, 42, 6061.
    7. V. Gebhardt, A. Bacher, M. Thelakkat, U. Stalmach, H. Meier, H. W. Schmidt, D. Haarer, Adv. Mater., 1999, 11, 119.
    8. K. H. Weinfurtner, H. Fujikawa, S. Tokito, Y. Taga, Appl. Phys. Lett., 2000, 76, 2502.
    9. K. Hosoi, T. Mori, T. Mizutani, T. Yamamoto, N. Kitamura, Thin Solid Films, 2003, 438-439, 201.
    10. S. Xiao, M. Nguyen, X. Gong, Y. Cao, H. Wu, D. Moses, A. J. Heeger, Adv. Funct. Mater., 2003, 13, 25.
    11. C. H. Chou, S. L. Hsu, K. Dinakaran, M. Y. Chiu, K. H. Wei, Macromolecules, 2005, 38, 745.
    12. J. W. Y. Lam, Y. Dong, H. S. Kwok, B. Z. Tang, Macromolecules, 2006, 39, 6997.
    13. H. C. Lin, H. H. Sung, C. M. Tsai, K. C. Li, Polymer, 2005, 46, 9810.
    14. H. L. Chou, K. F. Lin, Y. L. Fan, D. C. Wang, J Polym Sci: Part B: Polym Phys, 2004, 43, 1705.
    15. Y. H. Kim, J. W. Park, D. C. Shin, H. You, S. K. Kwon, J Polym Sci: Part A: Polym Chem, 2007, 45, 900.
    16. M. Fukuda, K. Sawaka, K. Yoshino, Jpn. Appl. Phys., 1989, 28, 1443.
    17. Y. Ohmori, M. Uchida, K. Muro, and K. Yoshino, Jpn. J. Appl. Phys., 1991, 30, 1941.
    18. E. J. W. List, R. Guentner, P. S. de Freitas, U. Scherf, Adv. Mater., 2002, 14, 374.
    19. R. Grisorio, G. P. Suranna, P. Mastrorilli, C. F. Nobile, Adv. Funct. Mater., 2007, 17, 538.
    20. J. I. Lee, G. Klaerner, R. D. Miller, Chem. Mater., 1999, 11, 1083.
    21. C. Xia, R. C. Advincula, Macromolecules, 2001, 34, 5854.
    22. W. L. Yu, J. Pei, W. Huang, and A. J. Heeger, Adv. Mater., 2002, 12, 828.
    23. L. L. Miller, G. D. Nordblom, E. A. Mayeda, J. Org. Chem., 1972, 37, 916.
    24. O. Narwark, S.C.J. Meskers, S. Brocke, R. Peetz, E. ThornCsanyi, H. Bassler, Chem. Phys., 2003, 294, 1.
    25. O. Narwark, A. Gerhard, S. C. J. Meskers, S. Brocke, E. ThornCsanyi, H. Bassler, Chem. Phys., 2003, 294, 17.

    QR CODE
    :::