| 研究生: |
陳政傑 Chen Jeng Jie |
|---|---|
| 論文名稱: |
利用系統動力模式建立CFSBR即時自動操作與控制策略之研究 |
| 指導教授: |
廖述良
Shu-Liang Liaw |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程研究所 Graduate Institute of Environmental Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 136 |
| 中文關鍵詞: | 連續流循序批次活性污泥系統 、系統動力模式 、自動監測與控制系統 |
| 外文關鍵詞: | Continuous-Flow SequencingBatch Reactor(CFSBR), System dynamics model, automatic monitoring and control |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
連續流循序批式活性污泥系統(Continuous-Flow Sequencing Batch Reactor, CFSBR)透過現地單槽式處理,解決下水道維護困難與建設的問題,為未來發展之趨勢。由於進流水水質、水量及環境條件會隨著時間變化,過去透過判斷pH與ORP反曲點以即時判斷微生物反應終點,以提升系統處理效益。但皆以靜態方式判斷折點,當進流水水質濃度高與微生物反應速率慢,導致微生物無法在限制時間內達反應之終點,造成系統無法達成處理之目的。且在系統運作初期,各反應相運作時間皆無擬定之依據,導致需要透過出流水水質結果持續修正,如此,造成時間與實驗成本的浪費。為了解決上述之問題,本研究欲建立一自動控制系統,透過系統動力模式依據進流水水質擬定操作策略,系統依據產出之操作策略運作,可將進流水水質處理至符合預期之水質,COD<100 mg/L、SS<30 mg/L及氨氮<10 mg/L。且透過建立控制策略擬定流程,可依據監測資訊與異常訊號,判斷系統問題與分析造成問題之原因,並產生解決對策,以及時解決進流水水質、水量及微生物隨時間改變與軟硬體異常之問題,藉此達成系統自動化之目的。
A CFSBR(Continuous-Flow Sequencing Batch Reactor)solve difficult problem of sewer of the construction and maintenance by using a single reactor on site. As a result of the influent of water of the quality, discharge of quantity and environmental conditions will change over time, in order toenhance the system processing efficiency, using pH and ORP broken point to judge microbial terminal point. When high concentrations of the influent water quality and microbial reaction rate is slow, judging microbial terminal point can’t make system achieve the purpose. In the initial period of operation and system produce strategy which make system operate without adequate foundation, so strategy need to sustained correction by analyzing result of the effluent, resulting in a waste of time and experimental costs. In this research is to establish an automatic control system, developed operating system dynamic model based strategy through the influent water quality for solve the above problems, and CFSBR base on strategy can beinfluent water treatment to meet the water quality expected, COD<100 mg/L,SS<30 mg/L and NH4+<10 mg/L. By creating a process to develop control strategies can be based on monitoring information and anomalies, determine system problems and analyze the causes of the problems caused and produce solution, as well as solve the influent of water of the quality, discharge of quantity and microbiological changes over time problems with hardware and software anomalies, thereby achieve the purpose of automation systems.
參考文獻
1. Baikun L. and S. Irvin, “The comparison of alkalinity and ORP as indicators for nitrification and denitrification in a sequencing batch reactor (SBR),” Biochemical Engineering Journal, Vol. 34,Issue 3,pp. 248–255 (2007).
2. Bruce E., perry L., Environmental Biotechnology:Principles and Applications,Mcgraw-hill,(2001).
3. Che Ok J., D. S. Lee, M. W. Lee, and J. M. Park, “Enhanced Biological Phosphorus Removal in an Anaerobic–Aerobic Sequencing Batch Reactor: Effect of pH,” Water Environment Research, Vol. 73,Issue 3,pp. 248–255 (2001).
4. Che Ok J. and J. M. Park, “Enhanced biological phosphorus removal in a sequencing batch reactor supplied with glucose as a sole carbon source,” Biochemical Engineering Journal, Vol. 34,Issue 3, pp. 301-305 (2000).
5. Mulkerrins D., A.D.W. Dobson, and E. Colleran, “Parameters affecting biological phosphate removal from wastewaters,” Environment International , Vol. 30,Issue 2, pp. 249-259(2004).
6. Joost G., B. Sellner, and W. Tappe, “Ammonia Oxidation in Nitrosomonas at NH3 Concentration near Km: Effects of pH andTemperature,” Water Research, Vol. 28,Issue 12, pp. 2561–2566(1994).
7. Letizia Z., N. Frison, E. Nota, M. Tomizioli, D. Bolzonella, and F. Fatone , “Progress in real-time control applied to biological nitrogen removal from wastewater . A short-review,” Desalination, Vol. 286, pp. 1-7 (2012).
8. Matthew M., L. Myers, R. Okey, and C. Hill, “THE USE OF OXIDATION-REDUCTION POTENTIAL AS A MEANS OF CONTROLLING EFFLUENT AMMONIA CONCENTRATION IN AN EXTENDED AERATION ACTIVATED SLUDGE SYSTEM,” Water Environment Foundation , pp. 5901-5926 (2006).
9. M.V.R., J. Ribes, A. Seco, J. Ferrer, “An advanced control strategy for biological nutrient removal in continuous systems based on pH and ORP sensors ,”Chemical Engineering Journal , Vol. 183, pp. 212-221 (2012)
10. Mino T., Effect on Phosphorus Accumulation on Acetate Metabolism in the Biological Phosphorus Removal Process. In Advances in Water Pollution Control: Biological Phosphate Removal from Wastewaters. R. Ramadori (Ed.), Pergamon Press, Oxford, Eng.(1987).
11. P.T. Martín de la V., E. M. de Salazar, M.A. Jaramillo, J. Cros , “New contributions to the ORP & DO time profile characterization to improve biological nutrient removal,” Bioresource Technology, Vol. 114, pp. 160-167(2012)
12. Pankaj T., T. Nandy, P. Ukey, P. Manekar, “Correlating on-line monitoring parameters, pH, DO and ORP with nutrient removal in an intermittent cyclic process bioreactor system,” Bioresource Technology, Vol. 99,Issue 16, pp. 7630-7635 (2008).
13. S. L., A. Pinto, N. Basset, J. Dosta , J. Mata-Álvarez , “ORP slope and feast–famine strategy as the basis of the control of a granular sequencing batch reactor treating winery wastewater,” Biochemical Engineering Journal, Vol. 68, pp. 190-198(2012).
14. Kousei S., Y. Yamamoto, K. Tsumura, S. Hatsumata, and M. Tatewaki, “Simultaneous Removal of Nitrogen and Phosphorus in IntermittentlyAerated 2-Tank Activated Sludge Process Using DO and ORP-Bending Point Control ,” Water Science and Technology, Vol. 68, NO.11-12, pp. 513-521(1994).
15. Susanne L. and H. Horn, “Evaluating operation strategies and process stability of a single stage nitritation–anammox SBR by use of the oxidation–reduction potential (ORP),”Bioresource Technology, Vol. 107, pp. 70-77(2012).
16. S.G. W., C.S. Ra,“Biological nitrogen removal with a real-time control strategy using moving slope changes of pH(mV)- and ORP-time profiles,” water research , Vol. 45,Issue 1, pp. 171-178(2011).
17. Watanabe S., Baba K. and Nogita S., Basic Studies on an ORP/External Carbon Source Control System for the Biological Denitrification Process. Instrumentation and Control Of Water and Wastewater Treatment and Transport System,4th IAWPRC Workshop (1985).
18. W.W. E., J.B. Patoczka, and G.W. Pulliam, “ANAEROBIC VERSUS AEROBIC TREATMENT IN THE U.S.A,”A WARE Incorporated, 227 French Landing, Nashville, TN 37228, USA(1998).
19. Yan-ying X., X. Zheng, T. Yang,and Y. Zou, “Monitoring ORP, pH and EC for the Start-up of an A/O SBR,” Bioinformatics and Biomedical Engineering, pp.2837-2840 (2008).
20. YSI Inc,ORP Management in Wastewater as an Indicator of Process Efficiency,YSI Environmental (2008).
21. 陳萬原,“單槽連續進流回分是活性污泥系統自動監控策略之研究-以ORP、pH 為監控參數”,碩士論文,國立中央大學環境工程研究所(1996)。
22. 楊素禎,“單槽連續進流回分式活性污泥系統處理動態進流污水自動控制之研究”,碩士論文,國立中央大學環境工程研究所(1998)。
23. 邱柏仁,“單槽連續進流回分式活性污泥系統溶氧控制之研究”,碩士論文,國立中央大學環境工程研究所(2001)。
24. 許添財,“連續流回分式活性污泥系統好氧相曝氣控制策略之研究-線上即時量測溶氧轉換率與需氧量方法之建立”,碩士論文,國立中央大學環境工程研究所(2002)。
25. 卓伯全,“連續流循序批分式活性污泥系統好氧相即時控制策略之發展-低溶氧生物脫氮除磷程序控制技術之研究”,博士論文,國立中央大學環境工程研究所(2003)。
26. 羅家麒,“連續流循序批分式活性污泥好氧相曝氣控制策略之研究-線上即時監測系統攝氧率方法建置及其攝氧行為之研究”,碩士論文,國立中央大學環境工程研究(2004)。
27. 陳義昇,“CFSBR 厭氧相/沉澱相/排水相/排泥相即時控制系統改良之研究”,碩士論文,國立中央大學環境工程研究所(2005)。
28. 鄭俊忠,“CFSBR好氧相/缺氧相即時控制系統改良之研究”,碩士論文,國立中央大學環境工程研究所(2005)。
29. 歐陽嶠暉,下水道工程學,長松文化公司(2011)。
30. 李季眉、邱應志、張怡塘,環境微生物,第二版,中華民國環境工程學會(2012)。
31. 石濤,環境微生物,鼎茂圖書出版股份有限公司(2006)。