| 研究生: |
韓承恩 Cheng-En Han |
|---|---|
| 論文名稱: |
十二英吋矽晶圓磊晶腔體五入口之數值模擬分析 Numerical Analysis of 12-inch Silicon Wafer Epitaxial Chamber with Five Entrance |
| 指導教授: |
陳志臣
Zhi-Chen Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 能源工程研究所 Graduate Institute of Energy Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 65 |
| 中文關鍵詞: | 化學氣相沉積 、磊晶 |
| 外文關鍵詞: | CVD, epitaxy |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
使用化學氣相沉積法進行磊晶,於晶圓表面形成薄膜已經是一個半導體行業中的重要製程,而磊晶的平坦度則是其中最為重要的挑戰,因為進行製程之反應腔體太大且複雜,因此需要藉由模擬分析其熱場、流場、濃度傳遞等來調整改善,使平坦度越來越好。
實驗中,因受限於熱輻射系統,不論如何調整各位置燈泡之熱功率比,晶圓表面皆無法有著均勻的溫度,因此進行矽薄膜生長時會受溫度影響而有生長厚度不均勻分佈之情形,因而希望可以透過改變流場來控制該部分之長率,使得長率較為均勻。
本研究中,藉由將入口流場分為五個區域來控制入口流量比例,以達成控制入口流速分佈來控制流場的變化,進而觀察腔體內濃度的變化及磊晶薄膜長率的變化。其中,因晶圓與載盤於腔體中為旋轉狀態,會影響流量變化的影響範圍,需再進行旋轉效應的研究。
Using chemical vapor deposition method for epitaxy, forming a thin film on the surface of the wafer is already an important process in the semiconductor industry, and the flatness of the epitaxy is the most important thing in the process. Because of the reaction chamber for the process is too large and complex, it is necessary to improve by simulating and analyzing its thermal field, flow field, concentration transfer, etc., to make the flatness better and better.
In the experiment, due to the limitation of the thermal radiation system, no matter how to adjust the heat power ratio of the bulbs at each position, the surface of the wafer cannot have a uniform temperature. Therefore, the growth rate of the silicon film will be affected by the temperature, and the growth rate will be less uniform at some positions. So we changing the flow field of the non-uniform part to change the deposition rate more uniformity.
In this study, the inlet flow rate is controlled by five regions, so as to control the inlet flow velocity distribution to control the change of the flow field, and then simulate and observe the change of the epitaxial film deposition rate and the concentration change in the chamber . Among them, due to the change of the flow rate, the requirements for the mesh will be extremely large. At the same time, because the wafer and the susceptor are in a rotating state in the chamber, flow field is influenced by rotation a lot. When entrance flow rate change, the influence range of each entrance would effect by rotation. The rotation effect should be the following study.
[1] K. F. Jensen and W.Kern, Thin Film Processes II(J. L. Vossen and W. Kern, Eds.), Academic Press, NewYork, 1991.
[2] P. B. Barna, Diagnostics and Applications of Thin Films(L. Eckertova and T. Ruzicka, Eds.), Inst. Phy.Publ., Bristol, 1992.
[3] H. Habuka, M. Katayama, M. Shimada, and K. Okuyama, “Numerical evaluation of silicon-thin film growth from SiHCl3-H2 gas mixture in a horizontal chemical vapor deposition reactor”, Japanese Journal of Applied Physics, 33(Part 1, No. 4A), pp.1977-1985, 1994.
[4] H. Habuka, T. Nagoya, M. Mayusumi, M. Katayama, M. Shimada, and K. Okuyama, “Model on transport phenomena and epitaxial growth of silicon thin film in SiHCl3-H2 system under atmospheric pressure”, Journal of Crystal Growth, 169(1), pp.61-72, 1996.
[5] S. Kommu, G.M. Wilson, and B. Khomami, “A theoretical/experimental study of silicon epitaxy in horizontal single-wafer chemical vapor deposition reactors”, Journal of the electrochemical society, pp. 1538-1550, 2000.
[6] A. Segal, A. Galyukov, A. Kondratyev, A. Sid’ko, S. Karpov, Y. Makarov, W. Siebert and P. Storck, “Comparison of silicon epitaxial growth on the 200-mm and 300-mm wafers from trichlorosilane in centura reactors”, Microelectronic Engineering, 56(1-2), pp.93-98, 2001.
[7] H. Habuka, “Flatness deterioration of silicon epitaxial film formed using horizontal single-wafer epitaxial reactor”, Japanese Journal of Applied Physics, 40(Part 1, No. 10), pp.6041-6044, 2001
[8] H. Habuka, S. Fukaya, A. Sawada, T. Takeuchi, and M. Aihara, “Flatness deterioration of silicon epitaxial film formed in a horizontal single-wafer epitaxial reactor II”, Japanese Journal of Applied Physics, 41(Part 1, No. 9), pp.5692-5696, 2002.
[9] S. Jeon, H. Park, H. Oh, and W. Kim, “Computational Modeling of a Chemical Vapor Deposition Reactor for Epitaxial Silicon Formation”, Science of Advanced Materials, 8(3), pp.578-582, 2016.
[10] Z. Ramadan, I.T. Im, and C.W. Park, “Process optimization and modeling of the silicon growth in trichlorosilane-hydrogen gas mixture in a planetary CVD reactor”, IEEE Transactions on Semiconductor Manufacturing, pp. 1-8, 2021.
[11] R.Kristina, “Multicomponent surface diffusion of adsorbed species: a description based on the generalized Maxwell¬¬-Stefan equations”, Chemical Engineering Science, 45(7), pp. 1779-1791, 1990.
[12] S. Kommu, B. Khomami, “High-volume single-wafer reactors for silicon epitaxy”, Industrial & engineering chemistry research, pp. 732-743, 2002.
[13] S. Bretsznajder, Prediction of transport and other physical properties of fluids, 1971.
[14] A. B. Koudriavtsev, R. F. Jameson and W. Linert, The Law of Mass Action, Springer, New York, 2001.
[15] H. Habuka, Y. Aoyama, S. Akiyama, T. Otsuka, W. F. Qu, M. Shimada and K. Okuyama, “Chemical process of silicon epitaxial growth in a SiHCl3-H2 system”, Journal of Crystal Growth, 207, pp.77-86, 1999.
[16] 王士賓,「300 mm 矽晶圓片於平坦度10奈米以下磊晶製程之數值模擬分析」,國立中央大學,碩士論文,民國一百零八年。
[17] 李仁傑,「12英吋矽晶圓化學氣相沉積矽磊晶製程熱輻射加熱系統之數值分析」,國立中央大學,碩士論文,民國一百零九年。