跳到主要內容

簡易檢索 / 詳目顯示

研究生: 韓承恩
Cheng-En Han
論文名稱: 十二英吋矽晶圓磊晶腔體五入口之數值模擬分析
Numerical Analysis of 12-inch Silicon Wafer Epitaxial Chamber with Five Entrance
指導教授: 陳志臣
Zhi-Chen Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 能源工程研究所
Graduate Institute of Energy Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 65
中文關鍵詞: 化學氣相沉積磊晶
外文關鍵詞: CVD, epitaxy
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 使用化學氣相沉積法進行磊晶,於晶圓表面形成薄膜已經是一個半導體行業中的重要製程,而磊晶的平坦度則是其中最為重要的挑戰,因為進行製程之反應腔體太大且複雜,因此需要藉由模擬分析其熱場、流場、濃度傳遞等來調整改善,使平坦度越來越好。
    實驗中,因受限於熱輻射系統,不論如何調整各位置燈泡之熱功率比,晶圓表面皆無法有著均勻的溫度,因此進行矽薄膜生長時會受溫度影響而有生長厚度不均勻分佈之情形,因而希望可以透過改變流場來控制該部分之長率,使得長率較為均勻。
    本研究中,藉由將入口流場分為五個區域來控制入口流量比例,以達成控制入口流速分佈來控制流場的變化,進而觀察腔體內濃度的變化及磊晶薄膜長率的變化。其中,因晶圓與載盤於腔體中為旋轉狀態,會影響流量變化的影響範圍,需再進行旋轉效應的研究。


    Using chemical vapor deposition method for epitaxy, forming a thin film on the surface of the wafer is already an important process in the semiconductor industry, and the flatness of the epitaxy is the most important thing in the process. Because of the reaction chamber for the process is too large and complex, it is necessary to improve by simulating and analyzing its thermal field, flow field, concentration transfer, etc., to make the flatness better and better.
    In the experiment, due to the limitation of the thermal radiation system, no matter how to adjust the heat power ratio of the bulbs at each position, the surface of the wafer cannot have a uniform temperature. Therefore, the growth rate of the silicon film will be affected by the temperature, and the growth rate will be less uniform at some positions. So we changing the flow field of the non-uniform part to change the deposition rate more uniformity.
    In this study, the inlet flow rate is controlled by five regions, so as to control the inlet flow velocity distribution to control the change of the flow field, and then simulate and observe the change of the epitaxial film deposition rate and the concentration change in the chamber . Among them, due to the change of the flow rate, the requirements for the mesh will be extremely large. At the same time, because the wafer and the susceptor are in a rotating state in the chamber, flow field is influenced by rotation a lot. When entrance flow rate change, the influence range of each entrance would effect by rotation. The rotation effect should be the following study.

    目錄 摘要 I Abstract VI 致謝 VII 目錄 VIII 圖目錄 XI 第一章 緒論 1 1-1 研究背景 1 1-2 化學氣相沉積反應過程 3 1-2-1 化學氣相沉積反應步驟 3 1-2-2 吸附作用 3 1-3 化學氣相沉積技術分類 6 1-4 文獻回顧 7 1-5 研究動機與目的 9 第二章 研究方法 14 2-1 模型幾何 14 2-1-1 物理系統與基本假設 15 2-1-2 統御方程式 15 2-1-3 邊界條件 16 2-2 混合氣體物理參數 18 2-3 化學反應方程式 20 2-3-1 化學反應 20 2-3-2 表面化學反應 21 2-4 表面吸附反應 22 2-4-1 質量通量(Mass flux) 22 2-4-2 吸附速率(The rate of adsorption) 23 第三章 數值方法 26 3-1 有限元素法(Finite element method) 26 3-2 網格測試 26 第四章 結果與討論 32 4-1 模型校正及驗證 32 4-1-1 三流速入口模型之驗證 32 4-1-2 五流速入口模型之驗證 33 4-2 晶圓與載盤溫場分析 33 4-2-1 晶圓溫度分佈 33 4-2-2 載盤溫度分佈 34 4-2-3 分析長率分佈 34 4-2-4 分析inner與outer流量之影響 35 4-3 載盤旋轉的效應 35 第五章 結論與未來方向 45 5-1 結論 45 5-2 未來方向 45 參考文獻 47 圖目錄 圖1 1 化學氣相沉積反應步驟[1] 10 圖1 2 反應速率與溫度關係圖[3] 10 圖1 3 三氯矽烷與氫氣進行化學反應時之機制與傳輸現象[4] 11 圖1 4 Centura®反應腔體在無旋轉條件下長率分佈(a)200 mm(b)300 mm[6] 11 圖1 5 進氣流速等位圖[7] 12 圖1 6 矽磊晶長率等位線圖[7] 12 圖1 7 預測晶圓溫度分布之磊晶厚度與實驗比較圖[9] 13 圖1 8改變燈絲加熱功率比 13 圖2 1 Centura®常壓磊晶反應腔體示意圖[2] 24 圖2 2 矽磊晶反應腔體剖面示意圖 24 圖2 3 矽磊晶腔體數值模型示意圖(左)上視圖 (右)下視圖 24 圖2 4 Inlet位置及名稱示意圖 25 圖3 1 網格收斂性測試流程圖 28 圖3 2 網格配置示意圖 28 圖3 3 30 mm處畫輔助圓輔助建立網格示意圖 29 圖3 4加密晶圓及載盤區域時中心網格配置不佳示意圖 29 圖3 5 30 mm處畫輔助圓建立之網格上視圖 30 圖3 6 網格收斂性測試圖 30 圖3 7 網格公差收斂性測試圖 31 圖4 1 三入口與五入口比較示意圖 37 圖4 2 晶圓溫度分佈圖 37 圖4 3 晶圓半徑0~149 mm之模擬與實驗長率分佈比較圖 38 圖4 4 晶圓邊緣長率上升 38 圖4 5 改變載盤溫度之長率分佈圖 39 圖4 6 氣體進入腔體時之區域示意圖 39 圖4 7 腔體入口速度分佈示意圖 39 圖4 8 進入腔體之氣體速度方向示意圖 40 圖4 9 z=3 mm處之xy平面x方向速度分佈圖 40 圖4 10 z=3 mm處之xy平面濃度分佈圖 41 圖4 11 inner, middle, outer對各區域影響範圍示意圖 42 圖4 12 實驗及模擬數據inner上升2%時晶圓中心長率降低 42 圖4 14 旋轉方向及切線位置示意圖 43 圖4 15隨著切線逐漸左移TCS莫耳濃度圖及濃度變化交界點逐漸右移示意圖 43 圖4 16 有無旋轉模擬長率對照圖 44

    [1] K. F. Jensen and W.Kern, Thin Film Processes II(J. L. Vossen and W. Kern, Eds.), Academic Press, NewYork, 1991.
    [2] P. B. Barna, Diagnostics and Applications of Thin Films(L. Eckertova and T. Ruzicka, Eds.), Inst. Phy.Publ., Bristol, 1992.
    [3] H. Habuka, M. Katayama, M. Shimada, and K. Okuyama, “Numerical evaluation of silicon-thin film growth from SiHCl3-H2 gas mixture in a horizontal chemical vapor deposition reactor”, Japanese Journal of Applied Physics, 33(Part 1, No. 4A), pp.1977-1985, 1994.
    [4] H. Habuka, T. Nagoya, M. Mayusumi, M. Katayama, M. Shimada, and K. Okuyama, “Model on transport phenomena and epitaxial growth of silicon thin film in SiHCl3-H2 system under atmospheric pressure”, Journal of Crystal Growth, 169(1), pp.61-72, 1996.
    [5] S. Kommu, G.M. Wilson, and B. Khomami, “A theoretical/experimental study of silicon epitaxy in horizontal single-wafer chemical vapor deposition reactors”, Journal of the electrochemical society, pp. 1538-1550, 2000.
    [6] A. Segal, A. Galyukov, A. Kondratyev, A. Sid’ko, S. Karpov, Y. Makarov, W. Siebert and P. Storck, “Comparison of silicon epitaxial growth on the 200-mm and 300-mm wafers from trichlorosilane in centura reactors”, Microelectronic Engineering, 56(1-2), pp.93-98, 2001.
    [7] H. Habuka, “Flatness deterioration of silicon epitaxial film formed using horizontal single-wafer epitaxial reactor”, Japanese Journal of Applied Physics, 40(Part 1, No. 10), pp.6041-6044, 2001
    [8] H. Habuka, S. Fukaya, A. Sawada, T. Takeuchi, and M. Aihara, “Flatness deterioration of silicon epitaxial film formed in a horizontal single-wafer epitaxial reactor II”, Japanese Journal of Applied Physics, 41(Part 1, No. 9), pp.5692-5696, 2002.
    [9] S. Jeon, H. Park, H. Oh, and W. Kim, “Computational Modeling of a Chemical Vapor Deposition Reactor for Epitaxial Silicon Formation”, Science of Advanced Materials, 8(3), pp.578-582, 2016.
    [10] Z. Ramadan, I.T. Im, and C.W. Park, “Process optimization and modeling of the silicon growth in trichlorosilane-hydrogen gas mixture in a planetary CVD reactor”, IEEE Transactions on Semiconductor Manufacturing, pp. 1-8, 2021.
    [11] R.Kristina, “Multicomponent surface diffusion of adsorbed species: a description based on the generalized Maxwell¬¬-Stefan equations”, Chemical Engineering Science, 45(7), pp. 1779-1791, 1990.
    [12] S. Kommu, B. Khomami, “High-volume single-wafer reactors for silicon epitaxy”, Industrial & engineering chemistry research, pp. 732-743, 2002.
    [13] S. Bretsznajder, Prediction of transport and other physical properties of fluids, 1971.
    [14] A. B. Koudriavtsev, R. F. Jameson and W. Linert, The Law of Mass Action, Springer, New York, 2001.
    [15] H. Habuka, Y. Aoyama, S. Akiyama, T. Otsuka, W. F. Qu, M. Shimada and K. Okuyama, “Chemical process of silicon epitaxial growth in a SiHCl3-H2 system”, Journal of Crystal Growth, 207, pp.77-86, 1999.
    [16] 王士賓,「300 mm 矽晶圓片於平坦度10奈米以下磊晶製程之數值模擬分析」,國立中央大學,碩士論文,民國一百零八年。
    [17] 李仁傑,「12英吋矽晶圓化學氣相沉積矽磊晶製程熱輻射加熱系統之數值分析」,國立中央大學,碩士論文,民國一百零九年。

    QR CODE
    :::