| 研究生: |
徐慧倫 Hui-Lun Hsu |
|---|---|
| 論文名稱: |
金融商品之評價與分析-以可贖回債券與固定配息股權連結之境外結構式商品為例 Evaluation and Analysis of Financial Products - Take Callable Bond and Fixed Coupon Note for example |
| 指導教授: | 吳庭斌 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 財務金融學系 Department of Finance |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 結構式商品 |
| 相關次數: | 點閱:5 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文主要評價並分析了兩種金融商品,可贖回債券與固定配息股權連結之境外結構式商品(FCN)。本文使用BDT模型建立市場利率的利率二元樹,並以此為基礎使用二元樹的方式計算可贖回債券的價格,而固定配息股權連結之境外結構式商品的部分則是使用蒙地卡羅模擬法來計算商品的損益。除了定價之外,也對兩種商品分別進行了敏感性分析。結果發現可贖回債券在債券信用評等越高,波動度越低時,商品的價值越高。而固定配息股權連結之境外結構式商品則是在波動度較低,且商品標的之間的相關係數為正相關時收益較高。希望有意投資此兩種金融商品的投資人能透過本文更完整的了解商品的設計思維與潛在風險。
This paper mainly evaluates and analyzes two financial products, Callable Bond and Fixed Coupon Note (FCN). This article uses BDT model to establish the binary tree of the market interest rate, and uses the tree as the basis to calculate the price of the callable bonds. As for FCNs, the profit and loss of FCNs are calculated by using Monte Carlo simulation method. In addition to pricing, the sensitivity analyses of two financial products are also carried out. The result shows that the higher the bond credit rating is and the lower the volatility of callable bonds is, the higher the value of callable bonds is. Also, the investors of FCNs will get higher returns when the volatility of underlying stock price is low and when the correlation coefficient between the underlying stocks is positively correlated. Hope that investors, who are interested in investing these two financial products, could learn about the design and the potential risks of the products through this paper.
[1] 張傳章,期貨與選擇權,三版,雙葉書局,台北市,民國106年。
[2] 陳松男,金融工程學,三版,新陸書局,台灣,民國97年。
[3] 陳松男,利率金融工程學:理論模型及實務應用,初版,新陸書局,台灣,民國100年。
[4] 李阿婷,「Hull-White 利率模型在美國公債估值中的研究」,國立清華大學,民國108年。
[5] 陳子謙、黎致平,「以LSM評價國外可贖回零息債券 (ZCB)」,貨幣觀測與信用評等,2017年7月。
[6] 廖姻斐,「應用BDT模型評價或有請求權債券-臺灣債券市場之實證研究」,淡江大學,民國90年。
[7] 廖高論,「股權結構式商品之評價與分析」,國立中央大學,民國103年。
[8] John C. Hull, OPTIONS, FUTURES,AND OTHER DERIVATIVES, NINTH EDITION, Pearson Education, 2015.
[9] Les Clewlow, Chris Strickland, Implementing Derivative Models, John Wiley & Sons Inc, 1998.
[10] Andrew J. Kalotay, George O. Williams & Frank J. Fabozzi,“A Model for Valuing Bonds and Embedded Options”, Financial Analysts Journal, Vol49(3), pp35-46.
[11] Christoph Klose, Li Chang Yuan, “Implementation of the Black, Derman and Toy Model”, 2003.
[12] Fischer Black, Emanuel Derman and William Toy, “A One-Factor Model of Interest Rates and Its Application to Treasury Bond Options”, FINANCIAL ANALYSTS JOURNAL,2003.
[13] Lars E.O. Svensson, “ESTIMATING AND INTERPRETING FORWARD INTEREST RATES: SWEDEN 1992-1994”, 1994.