| 研究生: |
黃柏升 Po-Sheng Huang |
|---|---|
| 論文名稱: |
電解水產氫效率之參數分析 Study on efficiency of water electrolysis |
| 指導教授: |
洪勵吾
Lih-Wu Hourng |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 61 |
| 中文關鍵詞: | 電解水 、產氫 、定電流密度 |
| 外文關鍵詞: | constant current density, hydrogen production, water electrolysis |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氫氣在釋放能量的過程中,沒有二氧化碳等溫室氣體的產出,相當具有發展潛力,而電解水產氫(water electrolysis)是目前產生氫氣常用的方法,擁有高效能、產生氫氣純度高、使用便利等特色。
本文利用白金電極並以玻璃U型管為電解槽,強鹼性KOH為電解質溶液,固定輸入電量進行電解水實驗的參數探討,各種工作參數如電解質濃度、電流密度、溫度對所需電壓之影響,找出較佳電解值濃度,以改善電解水產氫的效率。
實驗結果顯示提昇溫度對電解效率的影響很大,溫度由27℃至75℃,每提昇25℃電解效率就增加5~6%。實驗前預估白金電催化效果與電解液離子傳輸現象隨著溫度而有所不同,較佳濃度會隨著不同溫度而有所改變,實驗結果並未顯示出明顯的差異,較佳電解質濃度不隨著溫度而改變,較佳KOH濃度仍為30%。
During the process of releasing energy, hydrogen produce no green-house-effect gas and has a potential as a energy carrier in the future. Among the methods of hydrogen production, water electrolysis has many advantages, such as high efficiency, high purity in producing hydrogen, easy in use, etc., and thus become one of popular methods.
In this study, we use platinum electrodes and modified experimental set-up to study the effects of working parameters, such as concentration of electrolyte, current, voltage, and the time on the efficiency of electrolysis. Based on the data recorded by AUTOLAB power supply and the energy consumed through electrolysis, we can find out the optimum parameters for water electrolysis to improve the hydrogen production efficiency of water electrolysis.
The results of experiment show that temperature greatly affects the electrolysis efficiency. Each increase of 25℃ gives electrolysis efficiency raising about 5% to 6% from 27℃ to 75℃. Before experiment, I predict that electrocatalytic of Pt and ion transfer of electrolyte would differ from temperature. It’s also found that the relation between temperatures with better concentrations for better electrolysis efficiency is so week and in most conditions the better concentration of KOH is 30%.
1. S. Dunn, “Hydrogen futures: toward a sustainable energy system”, Hydrogen Energy, Vol.27, pp.235-264 (2002)
2. RA Hefner, Presentation at the 10th Repsol-Harvard Seminar on Energy Policy, in Madrid, Spain (1999)
3. Carl-Jochen Winter, “On energies of change — the hydrogen solution”, Gerling Akademie Verlag, pp. 67-82 (2000)
4. R. Mosdale and S. Srinivasan,” Analysis of performance and of water and thermal management in proton exchange membrane fuel cells”, Electrochimica Acta, Vol.40, pp.413-421 (1995)
5. C.J. Winter, and J. Nitsch, “Hydrogen as an Energy Carrier”, Spinger, (1988)
6. N. Nagai, M. Takeuchi, T. Kimura, and T. Oka,” Existence of optimum space between electrodes on hydrogen production by water electrolysis”, International Journal of Hydrogen Energy, Vol.28, pp.35-41 (2003)
7. D.Lj. Stojić, M.P. Marčeta, S.P. Sovilj, and Š.S. Miljanić, “Hydrogen generation from water electrolysis—possibilities of energy saving”, Journal of Power Sources, Vol.118, pp.315-319 (2003)
8. M.P. Marčeta, D.Lj. Stojić, D.P. Šaponjić, N.I. Potkonjak, and Š.S. Miljanić, ” Comparison of different electrode materials–Energy requirements in the electrolytic hydrogen evolution process”, Journal of Power Sources, Vol.157, pp.758-764 (2006)
9. R.F. de Souza, J.C. Padilha, R.S. Gonçalves, and J. Rault-Berthelot,” Dialkylimidazolium ionic liquids as electrolytes for hydrogen production from water electrolysis”, Electrochemistry Communications, Vol.8, pp.211-216 (2006)
10. R.F. de Souza, J.C. Padilha, R.S. Gonçalves, M.O. de Souza, and J. Rault-Berthelot” Electrochemical hydrogen production from water electrolysis using ionic liquid as electrolytes: Towards the best device”, Journal of Power Sources, Vol.164, pp.792-798 (2007)
11. S. Licht, B. Wang, S. Mukerji, T. Soga, M. Umeno, and H. Tributsch, “Over 18% solar energy conversion to generation of hydrogen fuel; theory and experiment for efficient solar water splitting”, International Journal of Hydrogen Energy, Vol.26, pp.653-659 (2001)
12. S. Licht, “Solar water splitting to generate hydrogen fuel—a photothermal electrochemical analysis”, International Journal of Hydrogen Energy, Vol.30, pp.459-470 (2005)
13. R.L. LeRoy, M.B.I. Janjua, R. Renaud, and U. Leuenberger, “Analysis of Time-Variation Effects in Water Electrolyzers”, J. Electrochem. Soc., pp.1674-1682 (1979)
14. R.L. LeRoy, and C.T. Bowen, ”The Thermodynamics of Aqueous Water Electrolysis”, J. Electrochem., pp.1954-1962 (1980)
15. K. Onda, T. Kyakuno, K. Hattori, and K. Ito, “Prediction of production power for high-pressure hydrogen by high-pressure water electrolysis”, Journal of Power Sources, Vol.132, pp.64-70 (2004)
16.章宗穰,“諾貝爾獎百年鑑 運動中的分子 熱力學與反應動力學”, 世茂出版社, pp.45, 66-67, 91(2004)
17. J. Koryta, J. Dvořák, and L. Kavan, Principles of electrochemistry, second edition, John Wiley, New York, 1993
18. D.R. Crow, Principles and Applications of Electrochemistry, 4th ed., pp.174-176, Blackie, New York (1994)
19. A. Roy, S. Watson, and D. Infield,” Comparison of electrical energy efficiency of atmospheric and high-pressure electrolysers”, International Journal of Hydrogen Energy, Vol.31, pp.1964-1979 (2006)
20. D.C. Giancoli , Physics for scientists and engineers with modern physics, second ed., Prentice-Hall, Englewood Cliffs, N.J, P.437-439
21. D.R. Lide, Editor-in-chief, CRC Handbook of chemistry and physics, 86th ed., pp.6-33, CRC press, Boca Raton, Fla., 2005
22. R.C. Reid, J.M. Prausnitz, and E.E. Poling, The Propertities of Gases and Liquids, Fourth Edition, McGraw-Hill, New York, 1987
23. M. G. Fontana, Corrosion Engineering, 3rd ed., McGraw-Hill, New York, p.457, 1986
24. J. Larminie, and A. Dicks, Fuel cell systems explained, John Wiley, Chichester, West Sussex, 2003