| 研究生: |
鄭偉欣 Wei-Hsin Cheng |
|---|---|
| 論文名稱: |
電化學放電加工硼矽玻璃之微流道成形技術研究 A Study on the Microchannel Machinability of Pyrex Glass by Using Electrochemical Discharge Machining |
| 指導教授: |
顏炳華
Biing-Hwa yan |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 三維微結構 、脈衝電壓 、微流道 、Pyrex玻璃 、電化學放電加工 |
| 外文關鍵詞: | microgroove, pulse voltage, Pyrex glass, 3D-microstructuring, ECDM |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來電化學放電加工(Electrochemical Discharge Machining, ECDM)被運用於加工非導體脆硬材料,而且已經證實可對Pyrex玻璃進行三維微結構的加工。不過,現今利用電化學放電進行微銑削加工卻無法有效的控制加工精度。因此本文以脈衝電壓取代直流電壓、電極轉速與水平加工進給率為參數,在Pyrex玻璃上進行微流道的加工,並探討加工後微流道的形狀及尺寸精度及其對於加工特性之影響。
實驗結果顯示,將直流波形能量加工改以脈衝能量輸入(40 V,Ton:Toff = 2ms:2ms),並結合電極的旋轉(1500 rpm),能使加工後的微溝槽具有最佳的改善效果。最後利用掃描式銑削加工法進行高深寬比之微溝槽與複雜三維微結構加工的可行性探討,結果發現加工後之微溝槽與三維結構具有極高的尺寸精度,並證明了電化學放電加工可真實應用於Pyrex玻璃上製作三維微結構之可行性。
Electrochemical discharge machining (ECDM) is demonstrated to be a potential process for 3D-microstructuring of Pyrex glass. However, it is difficult to obtain an accurate machining shape with a good surface quality because it is difficult to control the discharge characteristics near the tool tip. To improve the machining quality of the ECDM micromilling process, microgroove machining experiments were conducted in this study. Three factors affecting ECDM micromillimg performance, pulse voltage, rotational rate of tool and feed velocity of tool were taken up as machining parameters to investigate their influences on machining performance.
The results indicate that optimum combinations of both pulse voltage (40V, Ton:Toff = 2 ms:2 ms) and rotational speed (1500 rpm) will realize better machining accuracy. The feasibility of 3-dimensional microstructure machining was demonstrated by a layer-by-layer ECDM micromilling machining. Complex structures were made to demonstrate the great potential for the 3D microstructuring of Pyrex glass of the ECDM micromilling process.
1. H. Kurafuji and K. Suda, Electrical discharge drilling of glass, Annals of the CIRP, 16 415 (1968).
2. I. Basak and A. Ghosh, Mechanism of spark generation during electrochemical discharge machining: a theoretical model and experimental verification, Journal of Material Processing Technology, 62 46 (1996).
3. B. Bhattacharyya, B. N. Doloi and S. K. Sorkhel, Experimental investigations into electrochemical discharge machining (ECDM) of non-conductive ceramic materials, Journal of Materials Processing Technology, 95 145 (1999).
4. C. T. Yang, S. S. Ho and B. H. Yan and F. Y. Huang, Micro hole machining of borosilicate glass trough electrochemical discharge machining (ECDM), Key Engineering Materials, 196 149 (2001).
5. V. Fascio, H. H. Langen, H. Bleuler and Ch. Comninellis, Investigations of the spark assisted chemical engraving, Electrochemistry Communications, 5 203 (2003).
6. V. K. Jain, P. S. Rao, S. K. Chowdhury and K. O. Rajurkar, Experimental investigations into wire electrochemical spark machining (TW-ECSM), Trans. ASME Journal of Engineering of Industry, 113 75 (1991).
7. H. Langen, J. M. Breguet, H. Bleuler, Ph. Renaud and T. Masuzawa, Micro electrochemical discharge machining of glass, International Journal of Electrical Machining, 3 65 (1998).
8. R. Wüthrich, V. Fascio, D. Viquerat and H. Langen, In situ measurement and micro-machining of glass, International Symposium on Micro-mecatronics and Human Science (MHS’99), Nagoya, 185 (1999).
9. H. Langen, I. Ceausoglu, M. van der Meer, E. Lehmann, H. Bleuler and Ph. Renaud, Electrochemical micromachining of glass using Mico- EDMed Microtools, Proceedings of Ultraprecision in Manufacturing Engineering, 26–30 May Braunsweig, 672 (1997).
10. R. Wüthrich, V. Fascio and D. Viquerat and H. Langen, Study of spark assisted chemical engraving-process technology date, International Conference of the European Society for Precision Engineering and Nanotechnology (EUSPEN) 1 Einhoven, 265 (2002).
11. D. J. Kim, Y. Ahn, S. H. Lee and Y. K. Kim, Voltage pulse frequency and duty ratio effect in an electrochemical discharge microdrilling process of Pyrex glass, International Journal of Machine Tools & Manufacture, 46 1064 (2005).
12. R. Wüthrich, K. Fujisaki, Ph. Couthy, L. A. Hof and H. Bleuler, Spark assisted chemical engraving (SACE) in microfactory, Journal of Micromechanics and Microengineering, 15 S276 (2005).
13. R. Wüthrich, L. A. Hof, A. Lal, K. Fujisaki, H. Bleuler, Ph. Mandin and G. Picard, Physical principles and miniaturization of spark assisted chemical engraving (SACE), Journal of Micromechanics and Microengineering, 15 S268 (2005).
14. R. Wüthrich, U. Spaelter, Y. Wu and H. Bleuler, A systematic characterization method for gravity-feed micro-hole drilling in glass with spark assisted chemical engraving (SACE), Journal of Micromechanics and Microengineering, 16 1891 (2006).
15. R. Wüthrich, B. Despont, P. Maillard and H. Bleuler, Improving the material removal rate in spark-assisted chemical engraving (SACE) gravity-feed micro-hole drilling by tool vibration, Journal of Micromechanics and Microengineering, 16 N28 (2006).
16. C. T. Yang, S. L. Song, B. H. Yan and F. Y. Huang, Improving machining performance of wire electrochemical discharge machining by adding SiC abrasive to electrolyte, International Journal of Machine Tools&Manufacture, 496 2044 (2006).
17. B. H. Yan, C. T. Yang, F. Y. Huang and Z. H. Lu, Electrophoretic deposition grinding (EPDG) for improving the precision of microholes drilled via ECDM, Journal of Micromechanics and Microengineering, 17 376 (2007).
18. Z. P. Zheng, H. C. Su, F. Y. Huang and B. H. Yan, The tool geometrical shape and pulse-off time of pulse voltage effects in a Pyrex glass electrochemical discharge microdrilling process, Journal of Micromechanics and Microengineering, 17 265 (2007) .
19. 王家威 著,界面活性劑改散玻璃微孔電化學放電成形精度的影響,國立中央大學碩士論文,2006。