跳到主要內容

簡易檢索 / 詳目顯示

研究生: 廖翊涵
Yi-Han Liao
論文名稱: 以運動指標預測復健成效暨設計復健方針
Using Kinematic Features to Predict Rehabilitation Outcome and Guide Rehabilitation Strategy
指導教授: 陳純娟
Chun-Chuan Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 生醫理工學院 - 生物醫學工程研究所
Graduate Institute of Biomedical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 66
中文關鍵詞: 虛擬實境運動指標復健方針
外文關鍵詞: Virtual Reality, Kinematic Features, Rehabilitation Strategy
相關次數: 點閱:18下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 復健療程一直是改善中風造成的運動失能的主要方式之一,雖然多數的復健運動都被證實具有復健效果,卻不是全部的病患復健後運動功能損傷都獲得顯著提升。許多的文獻也提到復健療程沒有普遍的適用性。本研究透過虛擬實境系統提供中風復健療程並計算運動學相關指標,討論不同復健情形的病患與運動功能改善相關的運動學指標,藉此提出個別化的復健療程的指導方針。

    本研究招募了21名受試者,依據復健前後Fugl-Meyer量表是否達到進步10%的臨床效益,將病患分為復原普通和復原良好兩種情形(復原良好11人,復原普通10人),而兩組之間復健前臨床量表分數並無顯著差異。

    分析結果顯示,不同復原情形病患與改善其運動損傷相關的運動指標確實有所不同,運動效率、接近直線軌跡及速度穩定度的提升與復原良好的病患運動功能改善有關;而復原普通的病患運動速度及手部施壓能力的提升有助於運動功能提升。本研究也發現運動指標表現能夠精準預測病患的復健情形,顯示復健過程中運動指標的變化能當成設計復健療程的依據,而虛擬實境能夠幫助及時調整復健方針。總結來說,我們的研究結果說明個別化的復健療程將有機會為病患帶來更多的益處。未來我們希望能證實以運動指標及時評估與調整復健,能夠讓病患運動功能損傷獲得更多改善,使復健更有效率。


    Rehabilitation is one of the most frequently used therapeutic approaches to restore movement impairment after stroke, but significant variability exists between patients regarding rehabilitation efficacy. Many studies suggested that there is no optimal rehabilitation treatment suit to all patients. This study aims to identify the motion kinetics extracted from the virtual reality based rehabilitation that are significantly correlated with the functional improvement.
    Twenty -one stroke patients were recruited and were labeled as either having favourable (n=11) or poor recovery (n=10) according to whether their postrehabilitation improvement of Fugl-Meyer assessment has reached the 10% level of clinical significance. The clinical scores before the intervention revealed no significant difference in the initial impairments between the favourable and poor recovery groups.
    However, we found that the changes of motor kinetics during VR rehab differs in patients with different improvement levels: For patients with good recovery, the increase of efficiency, speed stability and straightness of trajectory leads to better functional improvement; For patients with poor recovery, the increase of motion speed and palm strength promotes the recovery. In additional, these kinematic features can be used to accurately predict the recovery outcome and thus server as guidance when designing the rehab strategy. In conclusion, our findings provide evidence that individualized treatment could most benefit patients and facilitate effective rehabilitation. In a future work, we will test whether real-time adjustment of rehabilitation according to the kinematic features can further improve the functional impairments.

    摘要 i Abstract ii 目錄 iii 圖目錄 v 表目錄 vi 第一章 緒論 1 1-1 研究背景 1 1-2 研究動機與目的 2 第二章 文獻回顧 3 2-1 中風復健療程 3 2-2 傳統臨床量表 4 2-3 虛擬實境於醫療復健之相關應用 5 2-3-1 虛擬實境與傳統復健之異同 5 2-3-2 與復健相關之運動學指標 6 2-4 預測中風復原情況 7 第三章 研究方法 8 3-1 實驗設計 8 3-1-1 收案標準 8 3-1-2 虛擬實境系統設計 10 3-1-3 實驗流程 16 3-2 資料來源 16 3-2-1 傳統臨床量表 16 3-2-2 遊戲運動指標 17 3-3 分析方法 22 3-3-1 病患分群規則 22 3-3-2 無母數統計分析 24 3-3-3 相關性分析 24 3-3-4 分類器 25 第四章 分析結果 26 4-1 復健前後改變什麼 26 4-1-1 虛擬實境系統是否具有復健療效 26 4-1-2 臨床條件是否造成復原能力的差異 27 4-1-3 復健前後運動指標變化 27 4-2 運動指標與量表相關性分析 31 4-2-1 籃球遊戲 31 4-2-2 拋接球遊戲 38 4-2-3 擦拭玻璃遊戲 42 4-3 以初期運動指標預測復原情形 44 4-3-1 籃球運動指標 44 4-3-2 拋接球運動指標 47 4-3-3 擦拭玻璃運動指標 50 第五章 結果討論 51 5-1 虛擬實境復健成效 51 5-2 與損傷/復原相關的運動指標 51 5-3 不同群組適用的復健方針 52 5-4 以運動表現預測復原情形 52 第六章 結論與未來展望 53 參考文獻 54

    1. Dennis, Martin S., et al. "Long-term survival after first-ever stroke: the Oxfordshire Community Stroke Project." Stroke 24.6 (1993): 796-800.
    2. Mayo, Nancy E., et al. "Activity, participation, and quality of life 6 months poststroke." Archives of physical medicine and rehabilitation 83.8 (2002): 1035-1042.
    3. Nor AM, McAllister C, Louw SJ. Agreement between ambulance paramedic- and physician-recorded neurological signs with Face Arm Speech Test (FAST) in acute stroke patients. Stroke. 2004, 35 (6): 1355–1359.
    4. Bütefisch, Cathrin, et al. "Repetitive training of isolated movements improves the outcome of motor rehabilitation of the centrally paretic hand." Journal of the neurological sciences 130.1 (1995): 59-68.
    5. Denti, L., M. Agosti, and M. Franceschini. "Outcome predictors of rehabilitation for first stroke in the elderly." European journal of physical and rehabilitation medicine 44.1 (2008): 3-11.
    6. Cifu DX, Stewart DG. Factors affecting functional outcome after stroke: a critical review of rehabilitation interventions. Arch Phys Med Rehabil. 1999, 80 (5): 35-39.
    7. Ferrucci, L., et al. "Recovery of functional status after stroke. A postrehabilitation follow-up study." Stroke 24.2 (1993): 200-205.
    8. Wade, Derick T., et al. "Physiotherapy intervention late after stroke and mobility." Bmj 304.6827 (1992): 609-613.
    9. TE Twitchell. The restoration of motor function following hemiplegia in man. Brain. 1951; 74: 443-480.
    10. Gladstone DJ1, Danells CJ, Black SE. The Fugl-Meyer Assessment of Motor Recovery after Stroke: A Critical Review of Its Measurement Properties. Neurorehabil Neural Repair. 2002,16(3): 232-240
    11. Blum, Lisa, and Nicol Korner-Bitensky. Usefulness of the Berg Balance Scale in stroke rehabilitation: a systematic review. Physical therapy 88.5 (2008): 559-566.
    12. 涂安廷, 應用腦電圖預測中風病人復健情況, Using EEG to predict the outcome of stroke rehabilitation, 2014
    13. Steultjens, Esther MJ, et al. "Occupational therapy for stroke patients a systematic review." Stroke 34.3 (2003): 676-687.
    14. Radomski, Mary Vining, and Catherine A. Trombly Latham, eds. Occupational therapy for physical dysfunction. Lippincott Williams & Wilkins, 2008.
    15. Legg, Lynn, et al. "Occupational therapy for patients with problems in personal activities of daily living after stroke: systematic review of randomised trials." Bmj (2007).
    16. Wolf, Steven L., et al. Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke: the EXCITE randomized clinical trial. Jama 296.17 (2006): 2095-2104.
    17. Lum, Peter S., et al. Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. Archives of physical medicine and rehabilitation 83.7 (2002): 952-959.
    18. Waller, Sandy McCombe, and Jill Whitall. Bilateral arm training: why and who benefits?. NeuroRehabilitation 23.1 (2008): 29-41.
    19. Yavuzer, Gunes, et al. Mirror therapy improves hand function in subacute stroke: a randomized controlled trial. Archives of physical medicine and rehabilitation 89.3 (2008): 393-398.
    20. Wolf, Steven L., et al. "Forced use of hemiplegic upper extremities to reverse the effect of learned nonuse among chronic stroke and head-injured patients." Experimental neurology 104.2 (1989): 125-132.
    21. Krakauer, John W. "Motor learning: its relevance to stroke recovery and neurorehabilitation." Current opinion in neurology 19.1 (2006): 84-90.
    22. Fugl-Meyer, Axel R., et al. "The post-stroke hemiplegic patient. 1. a method for evaluation of physical performance." Scandinavian journal of rehabilitation medicine 7.1 (1974): 13-31.
    23. Desrosiers, Johanne, et al. "Development and reliability of an upper extremity function test for the elderly: the TEMPA." Canadian Journal of Occupational Therapy 60.1 (1993): 9-16.
    24. Kunkel, Annett, et al. "Constraint-induced movement therapy for motor recovery in chronic stroke patients." Archives of physical medicine and rehabilitation 80.6 (1999): 624-628.
    25. Duncan, Pamela W., Martha Propst, and Steven G. Nelson. "Reliability of the Fugl-Meyer assessment of sensorimotor recovery following cerebrovascular accident." Physical therapy 63.10 (1983): 1606-1610.
    26. Sanford, Julie, et al. "Reliability of the Fugl-Meyer assessment for testing motor performance in patients following stroke." Physical therapy 73.7 (1993): 447-454.
    27. Roby‐Brami, A., et al. "Motor compensation and recovery for reaching in stroke patients." Acta neurologica scandinavica 107.5 (2003): 369-381.
    28. Krueger, Myron W. "Automating virtual reality." Computer Graphics and Applications, IEEE 15.1 (1995): 9-11.
    29. Henderson, Amy, Nicol Korner-Bitensky, and Mindy Levin. "Virtual reality in stroke rehabilitation: a systematic review of its effectiveness for upper limb motor recovery." Topics in stroke rehabilitation 14.2 (2007): 52-61.
    30. Saposnik, Gustavo, Mindy Levin, and Stroke Outcome Research Canada (SORCan) Working Group. "Virtual reality in stroke rehabilitation a meta-analysis and implications for clinicians." Stroke 42.5 (2011): 1380-1386.

    31. Kwon, Jae-Sung, et al. "Effects of virtual reality on upper extremity function and activities of daily living performance in acute stroke: a double-blind randomized clinical trial." NeuroRehabilitation 31.4 (2012): 379-385.
    32. Turolla, Andrea, et al. "Virtual reality for the rehabilitation of the upper limb motor function after stroke: a prospective controlled trial." Journal of neuroengineering and rehabilitation 10.1 (2013): 1.
    33. Rose, F. D., et al. "Training in virtual environments: transfer to real world tasks and equivalence to real task training." Ergonomics 43.4 (2000): 494-511.
    34. Boyd, Lara A., and Carolee J. Winstein. "Explicit information interferes with implicit motor learning of both continuous and discrete movement tasks after stroke." Journal of Neurologic Physical Therapy 30.2 (2006): 46-57.
    35. Boyd, Lara A., et al. "Learning implicitly: effects of task and severity after stroke." Neurorehabilitation and neural repair (2007).
    36. da Silva Cameirão, Mónica, et al. "Virtual reality based rehabilitation speeds up functional recovery of the upper extremities after stroke: a randomized controlled pilot study in the acute phase of stroke using the rehabilitation gaming system." Restorative neurology and neuroscience 29.5 (2011): 287-298.
    37. Cameirão, Mónica S., et al. "Neurorehabilitation using the virtual reality based Rehabilitation Gaming System: methodology, design, psychometrics, usability and validation." Journal of neuroengineering and rehabilitation 7.1 (2010): 1.
    38. Boyd, Lara A., et al. "Learning implicitly: effects of task and severity after stroke." Neurorehabilitation and neural repair (2007).
    39. Connelly, Lauri, et al. "A pneumatic glove and immersive virtual reality environment for hand rehabilitative training after stroke." Neural Systems and Rehabilitation Engineering, IEEE Transactions on 18.5 (2010): 551-559.
    40. McCrea, Patrick H., and Janice J. Eng. "Consequences of increased neuromotor noise for reaching movements in persons with stroke." Experimental brain research 162.1 (2005): 70-77.
    41. Osu, Rieko, et al. "Quantifying the quality of hand movement in stroke patients through three-dimensional curvature." Journal of neuroengineering and rehabilitation 8.1 (2011): 8-21
    42. Rohrer, Brandon, et al. "Movement smoothness changes during stroke recovery." The Journal of Neuroscience 22.18 (2002): 8297-8304.
    43. Liesjet van Dokkum, et al. "The contribution of kinematics in the assessment of upper limb motor recovery early after stroke." Neurorehabilitation and neural repair (2013): 4-12
    44. French, Beverley, et al. "Does repetitive task training improve functional activity after stroke? A Cochrane systematic review and meta-analysis." Journal of rehabilitation medicine 42.1 (2010): 9-15.

    45. Duff, Margaret, et al. "Adaptive mixed reality rehabilitation improves quality of reaching movements more than traditional reaching therapy following stroke." Neurorehabilitation and neural repair (2012): 1545968312465195.
    46. Denti, L., M. Agosti, and M. Franceschini. "Outcome predictors of rehabilitation for first stroke in the elderly." European journal of physical and rehabilitation medicine 44.1 (2008): 3-11.
    47. Rehme, Anne Kathrin, et al. "Identifying neuroimaging markers of motor disability in acute stroke by machine learning techniques." Cerebral cortex (2014): bhu100.
    48. Sheorajpanday, Rishi VA, et al. "Additional value of quantitative EEG in acute anterior circulation syndrome of presumed ischemic origin." Clinical Neurophysiology 121.10 (2010): 1719-1725.
    49. Cuspineda, E., et al. "QEEG prognostic value in acute stroke." Clinical EEG and neuroscience 38.3 (2007): 155-160.
    50. Sheorajpanday, Rishi VA, et al. "Quantitative EEG in ischemic stroke: Correlation with functional status after 6months." Clinical Neurophysiology 122.5 (2011): 874-883.
    51. Mirbagheri, Mehdi M., and W. Zev Rymer. "Time-course of changes in arm impairment after stroke: variables predicting motor recovery over 12 months." Archives of physical medicine and rehabilitation 89.8 (2008): 1507-1513.
    52. Talelli, Penelope, et al. "Theta Burst Stimulation in the Rehabilitation of the Upper Limb A Semirandomized, Placebo-Controlled Trial in Chronic Stroke Patients." Neurorehabilitation and neural repair 26.8 (2012): 976-987.
    53. Fisher, Ronald A. "The use of multiple measurements in taxonomic problems." Annals of eugenics 7.2 (1936): 179-188.
    54. Le Cessie, Saskia, and Johannes C. Van Houwelingen. "Ridge estimators in logistic regression." Applied statistics (1992): 191-201.
    55. Dean, Catherine, and Fiona Mackey. "Motor assessment scale scores as a measure of rehabilitation outcome following stroke." Australian Journal of Physiotherapy 38.1 (1992): 31-35.
    56. Barak, Sharon, and Pamela W. Duncan. "Issues in selecting outcome measures to assess functional recovery after stroke." NeuroRx 3.4 (2006): 505-524.
    57. Nemes, Szilard, et al. "Bias in odds ratios by logistic regression modelling and sample size." BMC medical research methodology 9.1 (2009): 1.

    QR CODE
    :::