跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳靜儀
Ching-Yi Chen
論文名稱: 矽酸鹽螢光粉用於白光LED之光學模型
The study of optical modeling of silicate phosphor for white LED.
指導教授: 孫慶成
Ching-Cherng Sun
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 96
語文別: 中文
論文頁數: 74
中文關鍵詞: 矽酸鹽螢光粉模型
外文關鍵詞: model, silicate phosphor
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,為了探討矽酸鹽螢光粉於白光LED封裝之光學特性,我們建立了螢光粉光學模型,其中結合米氏散射原理及蒙地卡羅光追跡法來分析光於螢光粉膠體中傳遞時所造成的體散射效應,並藉由藍光與黃光兩次光追跡法來描述白光LED之光學行為。最後,經由實驗與模擬之驗證與分析,我們成功地建立矽酸鹽螢光粉的光學模型,可運用於設計白光LED之封裝形式,避免空間色分佈不均勻的現象。但由於矽酸鹽螢光粉的光學特性,如:螢光粉再吸收和螢光粉熱衰現象,使我們的模型尚存在有許多的限制條件,需要更多的實驗數據來修正模型。


    In this thesis, we study the optical model to precisely describe optics and color distribution of the lights emitted by a blue LED covered with silicate phosphors. The optical model starts Mie scattering model and Monte Carlo ray tracing to describe the scattering of the lights when they are propagated in the phosphors, and the ray tracing is performed with blue and yellow rays. Through simulation and experimental measurement, we have successfully built an optical model, which can be applied to decide some package parameters in a white LED and to avoid color dispersion of the light pattern. Besides, we observed some interesting effects such as thermal decay and re-absorption of the phosphors. These effects could limit the validity of the optical model and need more study to make the optical model more correct.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖索引 VI 表索引 X 第一章 緒論 1 1.1 LED背景 1 1.2 研究動機與目的 4 1.3 論文大綱 5 第二章 基本原理 7 2.1 引言 7 2.2 LED發光原理 7 2.3 螢光粉發光原理 8 2.4 LED能量轉換過程與效率 12 2.5 混光原理 13 第三章 螢光粉等效光學模型之建立 14 3.1 引言 14 3.2 螢光粉散射模型 15 3.3 螢光粉吸收參數 23 3.5 螢光粉模型之分析 33 第四章 螢光粉等效光學模型之應用與分析 39 4.1 引言 39 4.2 白光LED之驗證 39 4.3 螢光粉再吸收效應 46 4.4 螢光粉之熱衰 49 第五章 結論 53 參考文獻 54 中英文對照表 57

    [1] N. Holonyak, Jr., and S. F. Bevaqua, “Coherent(visible) Light Emission From Ga(As1–xPx) Junctions,” Appl. Phys. Lett. 1, 82-83 (1962).
    [2] S. Nakamura and G. Fasol, The Blue Laser Diode: GaN vased light emitters and lasers (Spinger, 1997).
    [3] Y. Shimizu, K. Sakano, Y. Noguchi, and T. Moriguchi, “Light emitting device having a nitride compound semiconductor and a phosphor containing a garnet fluorescent material,” United States Patent, US 5998925 (1999).
    [4] S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett. 64, 1687-1689 (1994).
    [5] J.Y. Tsao, Light emitting diodes (LEDs) for general illumination: An OIDA technology roadmap update 2002 (Washington, D.C.: Optoelectronics Industry Development Association, 2002).
    [6] D. A. Steigerwald, J. C. Bhat, D. Collins, R.M. Fletcher, M.O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “ Illumination with solid state lighting technology,” IEEE J. Select. Topics Quantum Electron. 8, 310-320 (2002).
    [7] T.F. McNulty et al., “UV reflector and UV-based Light Source Having Reduced UV Radiation Leakage Incorporating The Same,” United States Patent, Us 6686676 B2 (2004).
    [8] A. Zauskas, F. Ivanauskas, R. Vaicekauskas, M. S. Shur, and R. Gaska, “Optimization of mulitichip white solid state lighting source with four or more LEDs,” Proc. SPIE 4445, 148-155 (2001).
    [9] Stelur et al., “Phosphor Blends for Generating White Light from Near-UV/Blue Light-Emitting Devices,” United States Patent, US 6685852 B2 (2004).
    [10] Duclos et al., “Phosphor Coating with Self-adjusting Distance from LED Chip,” United States Patent,US 6635363 B1 (2003).
    [11] A. Zukauskas, Introduction to Solid-State Lighting (John Wiley & Sons, NewYork, 2002).
    [12] E. F. Schubert, Light Emitting Diodes (Cambridge University Press, Cambridge, 2003).
    [13] 劉如熹,白光發光二極體用螢光粉最新發展,LED固態照明研討會論文集 (2008).
    [14] 劉如熹,王健源,白光發光二極體製作技術 (全華科技圖書公司, 2005)。
    [15] N. R. Taskar, R. N. Bhargava, J. Barone, V. Chhabra, V. Chabra, D. Dorman, A. Ekimov, S. Herko, and B. Kulkarni, “Quantum-confined-atom-based nanophosphors for solid state lighting,” Proc. SPIE 5187, 133-141 (2004).
    [16] R. Mueller-Mach, G. Mueller, M. Krames, and T. Trottier, “High-power Phosphor-converted Light-Emitting Diodes Based on III- Nitrides,” IEEE J. Sel. Topics Quantum Electron. , 339-345 (2002).
    [17] R. Mueller-Mach, G. O. Mueller, and M. R. Krames, “Phosphor materials and combinations for illumination-grade white pcLEDs,” Proc. SPIE 5187, 115-122 (2004).
    [18] 大田 登,基礎色彩再現工程 (全華科技圖書公司, 2006)。
    [19] S. J. Lee, “Analysis of light-emitting diodes bh Monte-Carlo photon simulation,” Appl. Opt. 40, 1427-1437 (2001).
    [20] Breault Research Organization, http://www.breault.com/.
    [21] D. Toublanc, “Henyey-Greenstein and Mie phase functions in Monte Carlo radiative transfer computations,” Appl. Opt. 35, 3270-3274 (1996).
    [22] J. P. Chevaillier, J. Fabre, and P. Hamelin, “Forward scattered light intensities by a sphere located anywhere in a Gaussian beam,” Appl. Opt. 25,1222-1225 (1986).
    [23] 何信穎,白光LED之YAG螢光粉光學模型之研究,國立中央大學光電所碩士論文,中華民國九十六年。
    [24] Q. Fu, W. B. Sun, and P. Yang, “Modeling of Scattering and Absorption by Nonspherical Cirrus Ice Particles at Thermal Infrared Wavelengths,” J. Atmos. Sci. 56, 2937-2947 (1999).
    [25] P. Yang, B. A. Baum, A. J. Heymsfield, Y. X. Hu, H. Huang, S. Tsay, and S. Ackerman, “Single-scattering properties of droxtals,” J. Quant. Spectrosc. Radiat. Transfer. 79-80, 1159-1169 (2003).
    [26] M. Mikrenska, P. Koulev, J. -B. Renard, E. Hadamcik, and J. –C. Worms, “Direct simulation Monte Carlo ray tracing model of light scattering by a class of real particles and comparison with PROGRA2 experimental results,” J. Quant. Spectrosc. Radiat. Transfer. 100, 256-267 (2006).
    [27] P. Yang, H. Wei, H. –L. Huang, B. A. Baum, Y. X. Hu, G. W. Kattawar, M. I. Mishchenko, and Q. Fu, “Scattering and absorption property database for nonspherical ice particles in the near- through far-infrared spectral region,” Appl. Opt. 44, 5512-5523 (2005).
    [28] C. C. Chang, R. Chern, C. C. Chang, C. Chu, J. Y. Chi, J. Su, I-Min Chan, and J. T. Wang, “Monte Carlo Simulation of Optical Properties of Phosphor-Screened Ultraviolet Light in a White Light-Emitting Device,” Jpn. J. Appl. Phys. 44, 6056-6061 (2005).
    [29] M. Kerker, H. Chew, P. J. McNulty, J. P. Kratohvil, D. D. Cooke, M. Sculley, and M. P. Lee, “Light scattering and fluorescence by small particles having internal structure,” Journal of Histochemistry and Cytochemistry 27, 250-263 (1979).
    [30] Q. Fu and W. Sun, “Mie Theory for Light Scattering by a Spherical Particle in an Absorbing Medium,” Appl. Opt. 40, 1354-1361 (2001).
    [31] I. W. Sudiarta and P. Chylek, “Mie-scattering formalism for spherical particles embedded in an absorbing medium,” J. Opt. Soc. Am. A 18, 1275-1278 (2001).
    [32] Á. Borbély and S. G. Johnson, “Performance of phosphor-coated light-emitting diode optics in ray-trace simulations,” Opt. Eng. 44, 111308-111308-4 (2005).
    [33] D. L. MacAdam, Spectrophotometry in Color Measurement, (Springer-Verlag, 1981), pp. 36-45.
    [34] C. C. Sun, T. -X. Lee, S. -H. Ma, Y. -L. Lee, and S. -M. Huang, “Precise optical modeling for LED lighting verified by cross correlation in the midfield region,” Opt. Lett. 31, 2193-2195 (2006).
    [35] N. Narendran, Y. Gu, J. P. Freyssinier-Nova, and Y. Zhu, “Extracting Phosphor-Scattered Photons to Improve White LED Efficiency,” Phys. Status Solidi A, 202, R60–R62 (2005).
    [36] K. Yamada, Y. Imai, and K. Ishii, “Optical Simulation of Light Source Devices Composed of Blue LEDs and YAG Phosphor,” J. Light & Vis. Env. 27, 70-74 (2003).
    [37] D. Kang, E. Wu, and D. Wang, “Modeling white light-emitting diodes with phosphor layers,” Appl. Phys. Lett. 89, 231102 (2006).
    [38] N. T. Tran and Frank G. Shi, “Simulation and Experimental Studies of Phosphor Concentration and Thickness for Phosphor-Based White Light-Emitting-Diodes,” IEEE, Microsystems, Packaging, Assembly and Circuits Technology, 255-257 (2007).
    [39] Cree EZ700, http://www.cree.com/products/pdf/CPR3DF.pdf
    [40] C. S. McCamy , “Correlated color temperature as an explicit function of chromaticity coordinates ,” Color Res. Appl. 17, 142-144 (1992).
    [41] J. Hernandez-Andres, R. L. Lee, and J. Romero, “Calculating Correlated Color Temperatures Across the Entire Gamut of Daylight and Skylight Chromaticities,” Appl. Opt. 38, 5703-5709 (1999).
    [42] Ivan Moreno, Ulises Contreras, ” Color distribution from multicolor LED arrays,” OPTICS EXPRESS, 15, 3607-3618 (2007).
    [43] M. Arik, S. Weaver, C. Becker, M. Hsing, and A. Srivastava, “Effects of localized heat generations due to the color conversion in phosphor particles and layers of high brightness light emitting diodes,” Presented at ASME/IEEE Int. Electronic Packaging Technical Conf. and Exhibition—InterPACK''03, 6–11 July, 2003.

    QR CODE
    :::