| 研究生: |
王仁宗 Ren-Tzong Wang |
|---|---|
| 論文名稱: |
N-烷氧苯基吡啶鹽之離子液晶研究 |
| 指導教授: |
賴重光
Chung K. Lai |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 論文出版年: | 2018 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 243 |
| 中文關鍵詞: | 離子液晶 、紫精 、聚集誘導放光 、楔形分子 、苯基吡啶鹽 、二苯基聯吡啶鹽 |
| 外文關鍵詞: | ionic liquid crystals, viologen, aggregation-induced emission, wadge-shaped mesogens, phenylpyridiniums, diphenylbipyridiniums |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
離子液晶其性質相較於傳統有機分子為極大不同,它們是由有機離子所組成,而有機結構具有無限變化意喻其為「可設計化」或「可微調化」,故離子液晶本於其獨特性質可以結合液晶(例如分子自組裝、非等向性等物理性質)與離子液體(例如離子導電性及其他等等)在近廿年來引起了相當大關注,而未來必定也預期將有爆炸性發展。
雖然第一個離子液晶即為吡啶鹽早於1938年就發表,近廿年來氮原子基礎的離子液晶研究有銨鹽、咪唑鹽、吡咯鹽、哌啶鹽、哌嗪鹽、嗎啉鹽及吡啶鹽等依然熱烈,而吡啶鹽的研究多為烷基取代吡啶鹽,雖然得知有芳香基取代可以對液晶原穩固性有幫助,但其他研究之芳香基都非取代於氮原子上。本研究以Zincke反應合成出N-芳香基取代吡啶氯鹽,然後使用甲醇為相轉移溶劑之技巧並利用皮爾森之軟硬酸鹼理論,將此吡啶氯鹽置換其他軟性陰離子對,而對此系列物質作其液晶性質之研究。
除了單鏈線形單離子吡啶鹽系列物質之液晶性質之研究外,我們亦對三鏈扇形單離子吡啶鹽系列物質,甚至於單鏈線形及三鏈扇形雙離子聯吡啶鹽系列物質進行研究。此外,我們亦對於陰離子誘導液晶性質,包括單鏈線形及三鏈扇形相對陰離子的吡啶鹽系列物質進行探討。
Ionic liquid crystals (ILCs) are entirely different properties from those of ordinary organic molecular compounds. They are composed of organic ions, and these organic compounds have unlimited structural variations which are “designable” or “fine-tunable”. Because ILCs’ unique properties that combine the characteristics of liquid crystals (i.e., self-assembling, anisotropic properties, etc.) with those of ionic liquids (i.e., ionic conductivities, and so forth) have been of great interest during the last two decades, we can expect explosive development in the future.
Although the first ILCs being pyridinium salts were reported in 1938, recently the fields of N-based ionic liquid crystals (i.e., Ammonium, Imidazolium, Pyrrolidinium, Piperidinium, Piperazinium, Morpholinium and Pyridinium cations) were also described with increasing interest. About pyridinium-based ILCs, many works are focusing on N-alkylpyridinium salts. Further the aryl- substituted pyridinium cations can make the rigid mesogens found in some works, but N-aryl substituents. So we synthesized the N-arylpyridinium chlorides via Zincke reaction. And we using methanol as a phase-transfer solvent replace the chloride anion into another soft anion by Pearson’s HSAB theory. Then we will describe that ILCs’ characteristics of these type substituents.
In addition to those N-(mono-alkoxyaryl)-pyridinium salts of linear mesogens, we made N-(tri-alkoxyaryl)-pyridinium salts of tapered mesogens, N-(mono- alkoxyaryl)-bipyridinium salts of linear mesogens, and N-(tri-alkoxyaryl)- bipyridinium salts of fan-shaped mesogens. Furthermore, we also concerned about the anion-induced mesogens of pyridinium salts.
1 L. M. Blinov, Structure and Properties of Liquid Crystals, Springer Science + Business Media B.V. 2011.
2 G. Friedel, Ann. Phys., 1922, 9, 273-474.
3 K. Goossens, K. Lava, C. W. Bielawski, K. Binnemans, Chem. Rev., 2016, 116, 4643-4807.
4 N. Garti, D. Libster and A. Aserin, Food Funct., 2012, 3, 700-713.
5 G. A. Knight and B. D. Shaw, J. Chem. Soc., 1938, 682-683.
6 H. Ohno, Electrochemical Aspects of Ionic Liquids, John Wiley & Sons, Inc., Hoboken, New Jersey, 2nd Ed., 2011.
7 K. Binnemans, Chem. Rev. 2005, 105, 4148-4204.
8 P. A. Hunt, C. R. Ashworth and R. P. Matthews, Chem. Soc. Rev., 2015, 44, 1257-1288.
9 J. H. Olivier, F. Camerel, G. Ulrich, J. Barberá and R. Ziessel, Chem. Eur. J., 2010, 16, 7134-7142.
10 M. Veber and G. Berruyer, Liq. Cryst., 2000, 27, 671-676.
11 K. Tanabe, Y. Suzui, M. Hasegawa and T. Kato, J. Am. Chem. Soc., 2012, 134, 5652-5661.
12 X. Cheng, X. Bai, S. Jing, H. Ebert, M. Prehm and C. Tschierske, Chem. Eur. J., 2010, 16, 4588-4601.
13 B. Soberats, M. Yoshio, T. Ichikawa, S. Taguchi, H. Ohno and T. Kato, J. Am. Chem. Soc., 2013, 135, 15286-15289.
14 K. Goossens, S. Wellens, K. Van Hecke, L. Van Meervelt, T. Cardinaels and K. Binnemans, Chem. Eur. J., 2011, 17, 4291-4306.
15 F. Artzner, M. Verber, M. Clerc and A. M. Levelut, Liq. Cryst., 1997, 23, 27-33.
16 M. M. Neidhardt, M. Wolfrum, S. Beardsworth, T. Wӧhrle, W. Frey, A. Baro, C. Stubenrauch, F. Giesselmann and S. Laschat, Chem. Eur. J., 2016, 22, 1-12.
17 F. Neve, O. Francescangeli, A. Crispini and J. Charmant, Chem. Mater., 2001, 13, 2032-2041.
18 L. M. Antill, M. M. Neidhardt, J. Kirres, S. Beardsworth, M. Mansueto, A. Baro and S. Laschat, Liq. Cryst., 2014, 41, 976-985.
19 G. Saielli, T. Margola and K. Satoh, Soft Matter, 2017, 13, 5204-5213.
20 K. Ohta, T. Sugiyama and T. Nogami, J. Mater. Chem., 2000, 10, 613-616.
21 T. Mihelj, J. Popović , Ž. Skoko and V. Tomašić, Thermochim. Acta, 2014, 591,119-129.
22 J. D. Holbrey and K. R. Seddon, J. Chem. Soc., Dalton Trans., 1999, 2133-2139.
23 P. H. J. Kouwer and T. M. Swager, J. Am. Chem. Soc., 2007, 129, 14042-14052.
24 R. Rondla, J. C. Y. Lin, C. T. Yang and I. J. B. Lin, Langmuir, 2013, 29, 11779-11785.
25 S. P. Ji, M. Tang, L. He and G. H. Tao, Chem. Eur. J., 2013, 19, 4452-4461.
26 V. Cîrcu, Ionic Liquid Crystals Based on Pyridinium Salts. In Progress and Developments in Ionic Liquids, (Ed.: S. Handy), InTech, 2017, DOI: 10.5772/65757.
27 I. Sánchez, J. A. Campo, J. V. Heras, M. R. Torres and M. Cano, J. Mater. Chem., 2012, 22, 13239-13251.
28 K. Ma, B. S. Somashekhar, G. A. N. Gowda, C. L. Khetrapal and R. G. Weiss, Langmuir, 2008, 24, 2746-2758.
29 M. Butschies, W. Frey and S. Laschat, Chem. Eur. J., 2012, 18, 3014-3022.
30 K. V. Axenov and S. Laschat, Materials, 2011, 4, 206-259.
31 A. A. Fernandez and P. H. J. Kouwer, Int. J. Mol. Sci., 2016, 17, 731-761.
32 T. Kato, Angew. Chem., 2010, 122, 8019-8021.
33 A. Abate, A. Petrozza, G. Cavallo, G. Lanzani, F. Matteucci, D. W. Bruce, N. Houbenov, P. Metrangolo and G. Resnati, J. Mater. Chem. A, 2013, 1, 6572-6578.
34 S. Tan, C. Wang and Y. Wu, J. Mater. Chem. A, 2013, 1, 1022-1025.
35 R. Kawano, Md. K. Nazeeruddin, A. Sato, M. Grätzel and M. Watanabe, Electrochem. Commun., 2007, 9, 1134-1138.
36 H. Cao-Cen, J. Zhao, L. Qiu, D. Xu, Q. Li, X. Chen and F. Yan, J. Mater. Chem., 2012, 22, 12842-12850.
37 W. S. Chi, H. Jeon, S. J. Kim, D. J. Kim and J. H. Kim, Macromol. Res., 2013, 21, 315-320.
38 Y. Abu-Lebdeh, A. Abouimrane, P. J. Alarco and M. Armand, J. Power Sources, 2006, 154, 255-261.
39 G. Klimusheva, T. Mirnaya and Y. Garbovskiy, Liq. Cryst. Rev., 2015, 3, 28-57.
40 L. Wang, H. K. Bisoyi, Z. Zheng, K. G. Gutierrez-Cuevas, G. Singh, S. Kumar, T. J. Bunning and Q. Li, Mater. Today, 2017, 20, 230-237.
41 L. Wang and Q. Li, Adv. Funct. Mater., 2016, 26, 10-28.
42 W. Dobbs, B. Heinrich, C. Bourgogne, B. Donnio, E. Terazzi, M. E. Bonnet, F. Stock, P. Erbacher, A. L. Bolcato-Bellemin and L. Douce, J. Am. Chem. Soc., 2009, 131, 13338-13346.
43 A. Safavi and M. Tohidi, J. Phys. Chem. C, 2010, 114, 6132-6140.
44 N. V. Shvedene, O. A. Avramenko, V. E. Baulin, L. G. Tomilova and I. V. Pletnev, Electroanalysis, 2011, 23, 1067-1072.
45 A. Beneduci, S. Cospito, M. La Deda, L. Veltri and G. Chidichimo, Nat. Commun., 2014, 5, 3105-3112.
46 S. Cospito, A. Beneduci, L. Veltri, M. Salamonczyk and G. Chidichimo, Phys. Chem. Chem. Phys., 2015, 17, 17670-17678.
47 M. Henmi, K. Nakatsuji, T. Ichikawa, H. Tomioka, T. Sakamoto, M. Yoshio and T. Kato, Adv. Mater., 2012, 24, 2238-2241.
48 C. G. Bazuin, D. Guillon, A. Skoulios and J. F. Nicoud, Liq. Cryst., 1986, 1, 181-188.
49 R. Somashekar, Mol. Cryst. Liq. Cryst., 1987, 146, 225-233.
50 J. J. H. Nusselder, J. B. F. N. Engberts and H. A. Van Doren, Liq. Cryst., 1993, 13, 213-225.
51 M. Tabrizian, A. Soldera, M. Couturier and C. G. Bazuin, Liq. Cryst., 1995, 18, 475-482.
52 D. P. Jackson and B. M. Fung, Mol. Cryst. Liq. Cryst., 1997, 303, 73-78.
53 Y. Haramoto, Y. Akiyama, R. Segawa, S. Ujiie and M. Nanasawa, J. Mater. Chem., 1998, 8, 275-276.
54 E. J. R. Sudhölter, J. B. F. N. Engberts and W. H. de Jeu, J. Phys. Chem., 1982, 86, 1908-1913.
55 D. W. Bruce and S. Estdale, Liq. Cryst., 1995, 19, 301-305.
56 C. Cruz, B. Heinrich, A. C. Ribeiro, D. W. Bruce and D. Guillon, Liq. Cryst., 2000, 27, 1625-1631.
57 C. M. Gordon, J. D. Holbrey, A. R. Kennedy and K. R. Seddon, J. Mater. Chem., 1998, 8, 2627-2636.
58 F. Neve, A. Crispini and S. Armentano, Chem. Mater., 1998, 10, 1904-1913.
59 T. Mihelj and V. Tomašić, J. Disper. Sci. Technol., 2014, 35, 581-592.
60 Name reactions in heterocyclic chemistry (Ed.: J. J. Li), John Wiley & Sons, Inc., Hoboken, New Jersey. 2005, pp 355-373.
61 D. Ster, U. Baumeister, J. L. Chao, C. Tschierske and G. Israel, J. Mater. Chem., 2007, 17, 33933400.
62 J. Pecyna, D. Pociecha and P. Kaszyński, J. Mater. Chem. C, 2014, 2, 1585-1591.
63 J. Pecyna, B. Ringstrand, S. Domagała, P. Kaszyński and K. Woźniak, Inorg. Chem., 2014, 53, 12617-12626.
64 T. D. Michels, J. U. Rhee and C. D. Vanderwal, Org. Lett., 2008, 10, 4787-4790.
65 N. Zeghbib, P. Thelliere, M. Rivard and T. Martens, J. Org. Chem., 2016, 81, 3256-3262.
66 T. Kuwabara, X. Tao, H. Guo, M. Katsumata and H. Kurokawa, Tetrahedron, 2016, 72, 1069-1075.
67 H. M. Kuo, W. P. Ko, Y. T. Hsu, G. H. Lee and C. K. Lai, Tetrahedron, 2016, 72, 6321-6333.
68 B. Clare, A. Sirwardana and D. R. MacFarlane, Synthesis, Purification and Characterization of Ionic Liquids. In Ionic Liquids, (Ed.: B. Kirchner), Springer, Heidelberg, 2009, pp. 7.
69 E. Alcalde, I. Dinarès, A. Ibáñes and N. Mesquida, Molecules, 2012, 17, 4007-4027.
70 J. S. Wilkes and M. J. Zaworotko, J. Chem. Soc., Chem. Commun., 1992, 965-967.
71 J. M. Pringle, J. Golding, C. M. Forsyth, G. B. Deacon, M. Forsyth and D. R. MacFarlane, J. Mater. Chem., 2002, 12, 3475-3480.
72 T. Burankova, E. Reichert, V. Fossog, R. Hempelmann and J. P. Embs, J. Mol. Liq., 2014, 192, 199-207.
73 R. D. Shannon, Acta Cryst., 1976, A32, 751767.
74 Y. Iwadate, K. Kawamura, K. Igarashi and J. Mochinaga, J. Phys. Chem., 1982, 86, 5205-5208.
75 H. D. B. Jenkins, H. K. Roobottom, J. Passmore and L. Glasser, Inorg. Chem., 1999, 38, 3609-3620.
76 C.W. Liew and S. Ramesh, Materials, 2014, 7, 4019-4033.
77 D. R. MacFarlane, M. Forsyth, E. I. Izgorodina, A. P. Abbott, G. Annat and K. Fraser, Phys. Chem. Chem. Phys., 2009, 11, 4962-4967.
78 M. Butschies, S. Sauer, E. Kessler, H.U. Siehl, B. Claasen, P. Fischer, W. Frey and S. Laschat, ChemPhysChem, 2010, 11, 3752-3765.
79 Y. V. Nelyubina, A. S. Shaplov, E. I. Lozinskaya, M. I. Buzin, and Y. S. Vygodskii, J. Am. Chem. Soc., 2016, 138, 10076-10079.
80 M. Yoshio, T. Ichikawa, H. Shimura, T. Kagata, A. Hamasaki, T. Mukai, H. Ohno and T. Kato, Bull. Chem. Soc. Jpn., 2007, 80, 1836-1841.
81 Sánchez, J. A. Campo, J. V. Heras, M. R. Torres and M. Cano, J. Mater. Chem., 2012, 22, 13239-13251.
82 J. Pastor, C. Cuerva, J. A. Campo, R. Schmidt, M. R. Torres and M. Cano, Materials, 2016, 9, 360-377.
83 M. J. Pastor, I. Sánchez, J. A. Campo, R. Schmidt and M. Cano, Materials, 2018, 11, 548-568.
84 K. Yamamura, Y. Okada, S. Ono, K. Kominami and I. Tabushi, Tetrahedron Lett., 1987, 28, 6475-6478.
85 M. Kijima, K. Setoh and H. Shirakawa, Mol. Cryst. Liq. Cryst., 2001, 364, 911-918.
86 P. K. Bhowmik, H. Han, J. J. Cebe, R. A. Burchett, B. Acharya and S. Kumar, Liq. Cryst., 2003, 30, 1433-1440.
87 W.W. Porter III, T. P. Vaid and A. L. Rheingold, J. Am. Chem. Soc., 2005, 127, 16559-16566.
88 P. K. Bhowmik, H. Han, I. K. Nedeltchev and J. J. Cebe, Mol. Cryst. Liq. Cryst., 2004, 419, 27-46.
89 P. K. Bhowmik, H. Han, I. K. Ndedeltchev, J. J. Cebe, S. W. Kang and S. Kumar, Liq. Cryst.,2006, 33, 891-906.
90 K. Tanabe, T. Yasuda, M. Yoshio and T. Kato, Org. Lett., 2007, 9, 4271-4274.
91 V. Causin and G. Saielli, J. Mol. Liq., 2009, 145, 41-47.
92 V. Causin and G. Saielli, J. Mater. Chem., 2009, 19, 9153-9162.
93 A. Bordyuh, Y. Garbovskiy, S. Bugaychuk, G. Klimusheva and V. Reshetnyak, Mol. Cryst. Liq. Cryst., 2009, 508, 296-308.
94 S. Asaftei, M. Ciobanu, A. M. Lepadatu, E. Song and U. Beginn, J. Mater. Chem., 2012, 22, 14426-14437.
95 M. Bonchio, M. Carraro, G. Casella, V. Causin, F. Rastrelli and G. Saielli, Phys. Chem. Chem. Phys., 2012, 14, 2710-2717.
96 G. Casella, V. Causin, F. Rastrelli and G. Saielli, Phys. Chem. Chem. Phys., 2014, 16, 5048-5051.
97 S. Cospito, A. Beneduci, L. Veltri, M. Salamonczyk and G. Chidichimo, Phys. Chem. Chem. Phys., 2015, 17, 17670-17678.
98 A. Beneduci, S. Cospito, D. Imbardelli, B. C. De Simone and G. Chidichimo, Mol. Cryst. Liq. Cryst., 2015, 610, 108-115.
99 H. Tahara, Y. Furue, C. Suenaga and T. Sagara, Cryst. Growth Des., 2015, 15, 4735-4740.
100 G. Casella, V. Causin, F. Rastrelli and G. Saielli, Liq. Cryst., 2016, 43, 1161-1173.
101 T. Kobayashi and T. Ichikawa, Materials, 2017, 10, 1243-1251.
102 P. K. Bhowmik, S. T. Killarney, J. R. A. Li, J. J. Koh, H. Han, L. Sharpnack, D. M. Agra-Kooijman, M. R. Fisch and S. Kumar, Liq. Cryst., 2018, 45, 872-885.
103 Thermochromic and Thermotropic Materials, eds. A. Seeboth and D. Lötzsch, Pan Stanford Publishing Pte. Ltd., Singapore, 2014.
104 A. N. Woodward, J. M. Kolesar, S. R. Hall, N.-A. Saleh, D. S. Jones and M. G. Walter, J. Am. Chem. Soc., 2017, 139, 8467-8473.
105 Y. Alesanco, A. Viñuales, J. Palenzuela, I. Odriozola, G. Cabañero, J. Rodriguez and R. Tena-Zaera, ACS Appl. Mater. Interfaces, 2016, 8, 14795-14801.
106 H. M. Osorio, S. Catarelli, P. Cea, J. B. G. Gluyas, F. Hartl, S. J. Higgins, E. Leary, P. J. Low, S. Martín, R. J. Nichols, J. Tory, J. Ulstrup, A. Vezzoli, D. C. Milan and Q. Zeng, J. Am. Chem. Soc., 2015, 137, 14319-14328.
107 D. Zhao, F. Fan, J. Cheng, Y. Zhang, K. S. Wong, V. G. Chigrinov, H. S. Kwok, L. Guo and B. Z. Tang, Adv. Optical Mater., 2015, 3, 199-202.
108 H. C. Lu, S. Y. Kao, H. F. Yu, T. H. Chang, C. W. Kung and K. C. Ho, ACS Appl. Mater. Interfaces, 2016, 8, 30351-30361.
109 H. Tahara, R. Baba, K. Iwanaga, T. Sagara and H. Murakami, Chem. Commun., 2017, 53, 2455-2458.
110 Y. Wang, Y. Liao, C. P. Cabry, D. Zhou, G. Xie, Z. Qu, D. W. Bruce and W. Zhu, J. Mater. Chem. C, 2017, 5, 3999-4008.
111 K. Sato, T. Yamasaki, T. Mizuma, K. Oyaizu and H. Nishide, J. Mater. Chem. A, 2016, 4, 3249-3252.
112 B. Pradhan, M. Gupta, S. K. Pal and A. S. Achalkumar, J. Mater. Chem. C, 2016, 4, 9669-9673.
113 J. Mei, Y. Hong, J. W. Y. Lam, A. Qin, Y. Tang and B. Z. Tang, Adv. Mater., 2014, 26, 5429-5479.
114 E. Marotta, F. Rastrelli and G. Saielli, J. Phys. Chem. B, 2008, 112, 16566-16574.
115 Y. Ren, W. H. Kan, M. A. Henderson, P. G. Bomben, C. P. Berlinguette, V. Thangadurai and T. Baumgartner, J. Am. Chem. Soc., 2011, 133, 17014-17026.
116 O. V. Gutov, E. B. Rusanov, A. A. Kudryavtsev, S. G. Garasevych, O. V. Slobodyanyuk, V. M. Yashchuk and A. N. Chernega, CrystEngComm, 2011, 13, 1373-1377.
117 K. Tanabe, D. Kodama, M. Hasegawa and T. Kato, Chem. Lett., 2014, 43, 184-186.
118 Y. Xiao, S. H. Wang, Y. P. Zhao, F. K. Zheng and G. C. Guo, CrystEngComm, 2016, 18, 2524-2531.
119 M. Nanasawa, M. Miwa, M. Hirai and T. Kuwabara, J. Org. Chem., 2000, 65, 593-595.
120 Y. V. Nelyubina, A. S. Shaplov, E. I. Lozinskaya, M. I. Buzin and Y. S. Vygodskii, J. Am. Chem. Soc., 2016, 138, 10076-10079.
121 R. R. Gagné, C. A. Koval and G. C. Lisensky, Inorg. Chem., 1980, 19, 2854-2855.
122 A. Lewandowski, L. Waligora and M. Galinski, Electroanal., 2009, 21, 2221-2227.
123 L. Chen, F. Hartl, H. M. Colquhoun and B. W. Greenland, Tetrahedron Lett., 2017, 58, 1859-1862.
124 Y. Tanaka and T. Sagara, J. Electroanal. Chem., 2008, 619, 65-74.
125 T. Higashi and T. Sagara, Langmuir, 2013, 29, 11516-11524.
126 T. G. Zhan, T. Y. Zhou, F. Lin, L. Zhang, C. Zhou, Q.-Y. Qi, Z. T. Li and X. Zhao, Org. Chem. Front., 2016, 3, 1635-1645.
127 S. Chen and S. H. Eichhorn, Isr. J. Chem., 2012, 52, 830-843.
128 D. T. Do and A. R. Schmitzer, ChemistrySelect, 2016, 1, 2448-2453.
129 A. Panǎ, M. Ilis, T. Staicu, I. Pasuk and V. Cîrcu, Liq. Cryst., 2016, 43, 381-392.
130 K. Tanabe, T. Yasuda, M. Yoshio and T. Kato, Org. Lett., 2007, 9, 4271-4274.
131 N. N. Al-Mohammed, R. S. D. Hussen, Y. Alias and Z. Abdullah, RSC Adv., 2015, 5, 2869-2881.
132 S. K. Gupta and S. Kumar, Liq. Cryst., 2012, 39, 1443-1449.
133 S. Asaftei, M. Ciobanu, A. M. Lepadatu, E. Song and U. Beginn, J. Mater. Chem., 2012, 22, 14426-14437.
134 M. A. Alam, J. Motoyanagi, Y. Yamamoto, T. Fukushima, J. Kim, K. Kato, M. Takata, A. Saeki, S. Seki, S. Tagawa and T. Aida, J. Am. Chem. Soc., 2009, 131, 17722-17723.
135 T. Kato, N. Mizoshita and K. Kishimoto, Angew. Chem. Int. Ed., 2006, 45, 38-68.
136 M. A. Shcherbina, A. V. Bakirov, L. Yan, U. Beginn, X. Zhu, M. Möller and S. N. Chvalun, Mendeleev Commun., 2015, 25, 142-144.
137 L. M. Antill, M. M. Neidhardt, J. Kirres, S. Beardsworth, M. Mansueto, A. Baro and S. Laschat, Liq. Cryst., 2014, 41, 976-985.
138 B. Soberats, M. Yoshio, T. Ichikawa, X. Zeng, H. Ohno, G. Ungar and T. Kato, J. Am. Chem. Soc., 2015, 137, 13212-13215.
139 A. Yildirim, P. Szymoniak, K. Sentker, M. Butschies, A. Bühlmeyer, P. Huber, S. Laschat and A. Schönhals, Phys. Chem. Chem. Phys., 2018, 20, 5626-5635.
140 M. Yoshio, T. Mukai, H. Ohno and T. Kato, J. Am. Chem. Soc., 2004, 126, 994-995.
141 M. Yoshio, T. Ichikawa, H. Shimura, T. Kagata, A. Hamasaki, T. Mukai, H. Ohno and T. Kato, Bull. Chem. Soc. Jpn., 2007, 80, 1836-1841.
142 K. Takagi, K. Yamauchi, S. Kubota, S. Nagano, M. Hara, T. Seki, K. Murakami, Y. Ooyama and J. Ohshita, RSC Adv., 2016, 6, 9152-9159.
143 A. Panǎ, F. L. Badea, M. Ilis, T. Staicu, M. Micutz, I. Pasuk and V. Cîrcu, J. Mol. Struct., 2015, 1083, 245-251.
144 P. Bonhôte, A.-P. Dias, N. Papageorgiou, K. Kalyanasundaram and M. Grätzel, Inorg. Chem., 1996, 35, 1168-1178.
145 T. Kato, Science, 2002, 295, 2414-2418.
146 U. Beginn, L. Yan, S. N. Chvalun, M. A. Shcherbina, A. Bakirov and M. Möller, Liq. Cryst., 2008, 35, 1073-1093.