跳到主要內容

簡易檢索 / 詳目顯示

研究生: 李家欣
Jian-Xing Lee
論文名稱: 多孔性陶瓷介質燃燒爐結構對燃燒現象之影響
The Effects of the Structure of a Porous Medium Burner on It’s Combustion Characteristics
指導教授: 曾重仁
Chung-Jen Tseng
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 88
語文別: 中文
論文頁數: 122
中文關鍵詞: 穩定極限間隙當量比多孔性陶瓷介質燃燒爐
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報


  • 中文摘要………………………………………………………………….I 英文摘要………………………………………………………………...II 誌謝……………………………………………………………………..III 目錄……………………………………………………………………..IV 表目錄………………………………………………………………...VIII 圖目錄…………………………………………………………………..IX 第一章緒論……………………………………………………………..1 1.1 前言…………………………………………………………….1 1.2 專有名詞定義………………………………………………….3 1.2.1定當量條件與當量比……………………………………..3 1.2.2火焰溫度…………………………………………………..4 1.2.3燃燒速率…………………………………………………..4 1.2.4可燃極限…………………………………………………..5 1.3 文獻回顧……………………………………………………….5 1.4 研究目的……………………………………………….……..15 第二章實驗裝置………………………………………………………18 2.1 實驗裝置….…...……………………………………………...18 2.2燃燒爐結構…………………………………………………….18 2.3 爐體部份……………………………………………………...19 2.3.1多孔性陶瓷介質…………………………………………19 2.3.2爐體隔熱材………………………………………………20 2.4 溫度量測系統………………………………………………...20 2.4.1熱電偶選擇與安置………………………………………21 2.4.2溫度數據擷取……………………………………………21 2.5 氣體流量量測與控制部份…………………………………...22 2.5.1氣體部份…………………………………………………22 2.5.2流量量測與控制…………………………………………22 2.5.3流量數據擷取系統………………………………………23 2.6 預混部份……………………………………………………...23 2.7 LabView程式部份…………………………………………….24 2.7.1控制質流量控制器部分…………………………………25 2.7.2擷取溫度與質流量控制器電位差訊號部分……………25 2.7.3同一溫度層之溫度平均並畫成示波器圖形部分………26 2.7.4判斷溫度分布穩定與否部分……………………………27 2.7.5計算當量比及平均流速部分……………………………28 2.7.6各點溫度、各層平均溫度、空氣與甲烷之流率、當量 比、平均流速及時間數據儲存部分…………………..28 2.8廢氣量測部份………………………………………………….29 2.8.1儀器組成部分……………………………………………29 2.8.2各個偵測器與各項氣體之偵測與計算…………………30 第三章實驗流程………………………………………………………41 3.1 儀器安裝與準備……………………………………………...41 3.2 預熱爐體……………………………………………………...42 3.3 流率穩定範圍………………………………………………...42 3.3.1最大燃燒率………………………………………………43 3.3.2最小燃燒率………………………………………………44 3.4量測廢氣……………………………………………………….44 第四章結果與討論……………………………………………………47 4.1多孔性介質材質不同之比較………………………………….47 4.2有無間隙之比較……………………………………………….49 4.3間隙大小對燃燒爐之影響…………………………………….50 4.4間隙為1.0 cm時孔徑大小對燃燒爐之影響………………….52 4.5間隙為0.5 cm時孔徑大小對燃燒爐之影響………………….55 第五章結論與建議……………………………………………………65 5.1結論…………………………………………………………….65 5.2未來研究之建議……………………………………………….66 參考文獻………………………………………………………………..68 附錄一 實驗數據………………………………………………………72 附錄二 誤差分析………………………………………………………89 (A)溫度量測誤差…………………………………………………89 (B)CO值量測誤差………………………………………………90 (C)NO/NOX值量測誤差…………………………………………91 (D)空氣流量誤差…………………………………………………91 (E)甲烷流量誤差…………………………………………………92 (F)火焰速度誤差…………………………………………………94 (G)當量比誤差……………………………………………………95 附錄三 各種材料之性質表及各項裝置與材料之出處………………97 附錄四 LabView程式圖示及程式圖……………………………...…100 附錄五 質流量控制器校正表………………………………………..105

    1. Kuo, K.J., Principles of Combustion, John Wiley and Sons, New York, 1986.
    2. Barnard, J.A., and Bradley, J.N., Flame and Combustion, Second Edition, Chapman and Hall, New York, 1985.
    3. Glassman, I., Combustion, Second Edition, Academic Press, Orlando, 1987.
    4. Williams, F.A., Combustion Theory, Second Edition, Benjamin Cummings, Menlo Park, CA, 1985.
    5. Takeno, T., and Sato, K., “An Excess Enthalpy Flame Theory,” Combustion Science and Technology, Vol. 20, pp. 73-84, 1979.
    5. Takeno, T., and Sato, K., “An Excess Enthalpy Flame Theory,” Combustion Science and Technology, Vol. 20, pp. 73-84, 1979.
    5. Takeno, T., and Sato, K., “An Excess Enthalpy Flame Theory,” Combustion Science and Technology, Vol. 20, pp. 73-84, 1979.
    5. Takeno, T., and Sato, K., “An Excess Enthalpy Flame Theory,” Combustion Science and Technology, Vol. 20, pp. 73-84, 1979.
    5. Takeno, T., and Sato, K., “An Excess Enthalpy Flame Theory,” Combustion Science and Technology, Vol. 20, pp. 73-84, 1979.
    5. Takeno, T., and Sato, K., “An Excess Enthalpy Flame Theory,” Combustion Science and Technology, Vol. 20, pp. 73-84, 1979.
    5. Takeno, T., and Sato, K., “An Excess Enthalpy Flame Theory,” Combustion Science and Technology, Vol. 20, pp. 73-84, 1979.
    5. Takeno, T., and Sato, K., “An Excess Enthalpy Flame Theory,” Combustion Science and Technology, Vol. 20, pp. 73-84, 1979.
    5. Takeno, T., and Sato, K., “An Excess Enthalpy Flame Theory,” Combustion Science and Technology, Vol. 20, pp. 73-84, 1979.
    14. Min, D.K., and Shin, H.D., “Laminar Premixed Flame Stabilized Inside a Honeycomb Ceramic,” International Journal of Heat and Mass Transfer, Vol. 34, No. 2, pp. 341-356, 1991.
    15. Tong, T.W., and Sathe, S.B., “Heat Transfer Characteristics of Porous Radiant Burners,” Journal of Heat Transfer, Vol. 113, pp. 423-428, 1991.
    15. Tong, T.W., and Sathe, S.B., “Heat Transfer Characteristics of Porous Radiant Burners,” Journal of Heat Transfer, Vol. 113, pp. 423-428, 1991.
    17. Hanamura, K., Echigo, R., and Zhdanok, S.A., “Superadiabatic Combustion in a Porous Medium,” International Journal of Heat and Mass Transfer, Vol. 36, No. 13, pp. 3201-3209, 1993.
    18. Kaplan, M., and Hall, M.J., “The Combustion of Liquid Fuels Within a Porous Media Radiant Burner,” Experimental Thermal and Fluid Science, Vol. 11, pp. 13-20, 1995.
    18. Kaplan, M., and Hall, M.J., “The Combustion of Liquid Fuels Within a Porous Media Radiant Burner,” Experimental Thermal and Fluid Science, Vol. 11, pp. 13-20, 1995.
    20. Tseng, C-J., “Liquid Fuel Combustion in Porous Ceramic Burners,” Ph.D. Dissertation, Department of Mechanical Engineering, The University of Texas at Austin, May, 1995.
    21. Tseng, C-J., and Howell, J.R., “Combustion of Liquid Fuels in a Porous Radiant Burner,” in Combust. Sci. and Tech. Vol. 112, pp. 141-161, 1996.
    21. Tseng, C-J., and Howell, J.R., “Combustion of Liquid Fuels in a Porous Radiant Burner,” in Combust. Sci. and Tech. Vol. 112, pp. 141-161, 1996.
    23. Howell, J.R., Hall, M.J., and Ellzey, J.L., “Combustion of Hydrocarbon Fuels Within Porous Inert Media,” Prog. Energy Combust. Sci. Vol. 22, pp. 121-145, 1996.
    23. Howell, J.R., Hall, M.J., and Ellzey, J.L., “Combustion of Hydrocarbon Fuels Within Porous Inert Media,” Prog. Energy Combust. Sci. Vol. 22, pp. 121-145, 1996.
    23. Howell, J.R., Hall, M.J., and Ellzey, J.L., “Combustion of Hydrocarbon Fuels Within Porous Inert Media,” Prog. Energy Combust. Sci. Vol. 22, pp. 121-145, 1996.
    26. Mital, R., Gore, J.P., and Viskanta, R., “A Study of the Structure of Submerged Reaction Zone in Porous Ceramic Radiant Burners,” Combustion and Flame, Vol. 111, pp. 175-184, 1997.
    27. Hanamura, K., Echigo, R., Warme and Stoffubertragung, Vol. 26, pp. 377-383, 1991.
    28. Bouma, P.H., and Goey, L.P.H., “Premixed Combustion on Ceramic Foam Burners,” Combustion and Flame, Vol. 119, pp. 133-143, 1999.
    29. Glarborg, P., Lilleheie, N.T., Magnussen, B.F., and Huppa, M., Twenty-Fourth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1992, p. 889.
    30. Hackert, C.L., Ellzey, J.L., and Ezekoye, O.A., “Combustion and Heat Transfer in Model Two-Dimensional Porous Burners,” Combustion and Flame, Vol. 116, pp. 177-191, 1999.
    31. Kingery, W.D., H, K. Bowen, and D. R. Uhlmann, Introduction to Ceramics, Wiley, New York, 1975.
    32. Touloukian, Y.S. (Ed.), Thermophysical Properties of Matter, Thermophysical Properties Research Center, Purdue University, 1978.
    33. High-Tech Ceramics product literature, High-Tech Ceramics Co., Alfred, NY, 1988.
    33. High-Tech Ceramics product literature, High-Tech Ceramics Co., Alfred, NY, 1988.
    35. Moffat, R.J., “Describing the Uncertainties in Experimental Results,” Experimental Thermal and Fluid Science, Vol. 1, pp. 3-17, 1988.

    QR CODE
    :::