| 研究生: |
黃英明 Ying-Ming Huang |
|---|---|
| 論文名稱: |
Gauss-Bonnet 重力理論中穿隧效應的霍金輻射 Hawking Radiation as Tunneling in Gauss-Bonnet Gravity |
| 指導教授: |
陳江梅
Chiang-Mei Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 畢業學年度: | 95 |
| 語文別: | 英文 |
| 論文頁數: | 56 |
| 中文關鍵詞: | 穿隧效應 、熵 、空間曲率 、霍金輻射 |
| 外文關鍵詞: | Hawking radiation, entropy, curvature, tunneling |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在1974年,霍金率先提出在古典黑洞彎曲時空下場論的量子化效應會導致黑洞有熱輻射現象。經過了 30幾年之後,在1999年Wilzcek 和他的學生Parikh 提出一個非常漂亮的方法來處理霍金熱輻射。他們的方法是把球對稱黑洞視界附近霍金輻射當成是一種半古典的穿隧過程。這種穿隧過程隱含了動態黑洞幾何。我們將Parikh 和Wilzcek的方法應用到Gauss-Bonnet 黑洞上。Gauss-Bonnet 重力理論中廣義的黑洞可具有三種不同的空間曲率:k = 1為球形式,k = -1為馬鞍形,k = 0為平直形。我們經由穿隧效應的方法去計算這三類型式黑洞的熵,結果和從熱力學第一定律所獲得的熵是相等的。我們驗證了Parikh-Wilzcek的穿隧效應計算霍金輻射的方法也適用於Gauss-Bonnet理論的黑洞。
In 1974 Hawking had proposed the idea of the emission of thermal radiation from a black hole under the field theory quantized on classical curved spacetime. In 1999 Parikh and Wilzcek proposed an elegant method to treat the Hawking radiation as a semi-classical tunneling process near the event horizon of a spherically symmetric black hole. Their method incorporates the effects of a dynamical black hole geometry. We apply Parikh and Wilzcek’s method to Gauss-Bonnet black holes. We consider three types of “generalized black hole” with different spatial curvature, namely k = 1 for spherical, k = −1 for hyperbolic and k = 0 for flat, in Gauss-Bonnet gravity. We discover that the entropy obtained from the tunneling approach is consistent with the result derived from the first law calculation. Therefore, we show that the
tunneling approach works for the Gauss-Bonnet black holes with zero curvature, negative constant curvature and positive constant curvature hypersurfaces.
[1] Astronomical Society of Edinburgh Journal 39 - Black Holes - Part 1 - History.
[2] R. P. Kerr, “Gravitational field of a spinning mass as an example of algebraically special metrics”, Phys. Rev. Lett. 11, 237 (1963).
[3] F. R. Tangherlini, “Schwarzschild field in N dimensions and the dimensionality of space problem”, Nuovo Cim. 27, 636 (1963).
[4] E. T. Newman, R. Couch, K. Chinnapared, A. Exton, A. Prakash and R. Torrence,“Metric of a rotating, charged mass”, J. Math. Phys. 6, 918-919 (1965).
[5] B. Carter, “Hamilton-Jacobi and Schr¨odinger separable solutions of Einstein’s equations”, Commun. Math. Phys. 10, 280 (1968).
[6] B. Carter, “Black hole equilibrium states”, in: Black Holes (Les Houches Lectures),eds. B. S. DeWitt and C. DeWitt (Gordon and Breach, New York, 1972).
[7] G. W. Gibbons, H. Lu, D. N. Page and C. N. Pope, “The general Kerr-de Sitter metrics in all dimensions”, J. Geom. Phys. 53, 49-73 (2005).
[8] D. G. Boulware and S. Deser, “String-generated gravity models”, Phys. Rev.Lett. 55, 2656 (1985).
[9] R. C. Myers and M. J. Perry, “Black holes in higher dimensional space-times”,Ann. Phys. 172, 304 (1986).
[10] S. Carroll, Spacetime and Geometry: An Introduction to General Relativity,Benjamin Cummings (2003).
[11] P. K. Townsend, “Black holes”, arXiv:gr-qc/9707012.
[12] R. M. Wald, General Relativity, University Of Chicago Press (1984).
[13] H. C. Ohanian, Gravitation and Spacetime, W. W. Norton and Company (1994).
[14] E. Poisson, A Relativist’s Toolkit: The Mathematics of Black Hole, Cambridge University Press (2004).
[15] D. Lovelock, “The Einstein tensor and its generalizations,” J. Math. Phys. 12,498 (1971).
[16] R.-G. Cai, “Gauss-Bonnet black holes in AdS spaces”, Phys. Rev. D65, 084014 (2002)
[arXiv:hep-th/0109133].
[17] T. Clunan, S. F. Ross and D. J. Smith, “On Gauss-Bonnet black hole entropy”,Class. Quant. Grav. 21, 3447-3458 (2004) [arXiv:gr-qc/0402044].
[18] N. Zettili, Quantum Mechanics: Concepts and Applications, Wiley (2001).
[19] R. L. Liboff, Introductory Quantum Mechanics, Addison Wesley, (1980).
[20] S. W. Hawking, “Particle creation by black holes”, Comm. Math. Phys. 43, 199 (1975) [Erratum-ibid. 46, 206 (1976)].
[21] J. B. Hartle and S. W. Hawking, “Path-integral derivation of black-hole radiance”,Phys. Rev. D13, 2188-2203 (1976).
[22] V. S. Mashkevich, “Conservative model of black hole and lifting of the information loss paradox,” arXiv:gr-qc/9707055.
[23] M. K. Parikh and F. Wilczek, ”Hawking Radiation As Tunneling”, Phys. Rev.Lett. 85, 5042-5045 (2000), [arXiv:hep-th/9907001].
[24] P. Painlev´e, “La mecanique classique el la theorie de la relativite,” C. R. Acad.Sci. (Paris) 173, 677 (1921).
[25] M. K. Parikh, “Energy conservation and Hawking radiation”, arXiv:hepth/0402166.
[26] B. Zwiebach, “Curvature squared terms and string theories”, Phys. Lett. B156,315 (1985).