| 研究生: |
楊庭菽 Ting-Shu, Yang |
|---|---|
| 論文名稱: |
合成應用於高分子太陽能電池的含苯並[1,2-b:4,5-b']二噻吩為骨架之D-π-A共聚物 |
| 指導教授: |
吳春桂
Chun-Guey Wu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 178 |
| 中文關鍵詞: | 高分子太陽能電池 、含苯並二噻吩 、氟化 、硫烷鏈 、不同分子量的共聚物 |
| 外文關鍵詞: | polymer solar cells, benzodithiophene, Fluorinated, alkylthio chain, different copolymers of molecular weight |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
高分子太陽能電池中作為主動層的P型共軛高分子,其光電性質可藉由改變結構及分子量而調整。本研究利用8-bis(5-(2-ethylhexyl)
thiophen-2-yl)-2,6-di(thiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene為Donor單元(D),5,8-dibromo-2,3-bis(4-(hexyloxy)phenyl)pyrido[3,4-b]pyrazine為Acceptor單元(A),合成出P11共聚物,並在D或A分別接上含有拉電子性的硫烷鏈或氟原子,合成出P12和P14共聚物,或同時接上硫烷鏈和氟原子的P15共聚物,並與本實驗室先前合成沒有thiophene bridge之P9和P10一起探討此六個共聚物的性質及光電表現。結果顯示含有thiophene bridge的P11和P12的共軛長度比P9和P10長,最大吸收波長往長波長移動,因此所組裝的元件有較高的Jsc值;含有拉電子性的氟原子之P15因其分子量最大,吸收係數高,形成主動層時結晶度良好,且與PC61BM形成彼此穿插且各自連續的網狀結構,組裝成元件有最高的Jsc值(11.70 mA/cm2)、FF值(0.53)及光電轉換效率為4.50%。另外,P2和P15共聚物分別可以藉由剛合成的Pd(PPh3)4為催化劑進行聚合反應,以及使用不同的混合溶劑(CHCl3/Hexane和THF/Hexane)進行索式萃取進而得到較高分子量的共聚物,組裝成元件時高分子量共聚物的元件效率(P2:1.67%, P15:4.31%)大於低分子量的元件效率(P2:0.91%, P15:2.43%)。
The photovoltical performance of a P-type conjugated polymer can be tuned by changing the molecular structure and weight. In this study, 8-bis(5-ethylhexyl)thiophen-2-yl)-2,6-di(thiophen-2-yl)benzo[1,2-b:4,5-b'] dithiophene was used as a donor unit and bromo-2,3-bis(4-(hexyloxy) phenyl)pyrido[3,4-b]pyrazine was used as an acceptor to construct the copolymer P11. Furthermore, an electron-withdrawing alkylthio chain was attached on the donor to form P12, or adding electron-withdrawing fluorine atoms on the acceptor to prepare P14. P15 has alkylthio chain on the donor and fluorine on the acceptor. Combining these four new copolymers with P9 and P10 (without thiophenebridge) prepared in our lab before, the properties- photovoltical performance relationship were investigated. The results showed that the conjugation length of P11 and P12 which containing thiophene bridge was longer than P9 and P10, respectively therefore the corresponding solar cells have higher Jsc value. P15 has higher molecular weight, large absorption coefficient, good crystallinity and forms an interpenetrating bicontinuous network when blend with PC61BM. As a result, inverted cell based on P15 copolymer exhibits the highest Jsc value (11.70 mA/cm2), FF value (0.53) and conversion efficiency (4.50%) amongst the copolymers studied in this thesis. In addition, increasing the molecular weight of P2 by using the fresh prepared Pd(PPh3)4 as a catalyst, or by Soxhlet extraction of P15 with high polar solvent. We have proved the copolymers with higher molecular weight have the efficiency (P2:1.67%, P15:4.31%) higher than that of copolymers with lower molecular weight (P2:0.91%, P15:2.43%).
[1].Germack, D. S.; Chan, C. K.; Hamadani, B. H.;Richter, L. J.; FischerD. A.; Gundlach, D. J.; DeLongchamp, D. M., “Substrate-Dependent Interface Composition and Charge Transport in Films for Organic Photovoltaics”, Appl. Phys. Lett. 2009, 94, 233303-1~233303-3.
[2].Xu, Z.; Chen, L. M.; Yang, G.; Huang, C. H.; Hou, J.; Wu, Y.; Li, G.; Hsu,C. S.; Yang, Y., “Vertical Phase Separation in Poly(3-hexyl thiophene)Fullerene Derivative Blends and its Advantage for Inverted Structure Solar Cells”, Adv. Funct. Mater. 2009, 19, 1227-1234.
[3].Lee, T. W.; Noh, T.; Choi, B. K.; Kim, M. S.; Shin, D. W.; Kido, J.,“High-Efficiency Stacked White Organic Light-Emitting Diodes”, J. Appl. Phys. Lett. 2008, 92, 043301-1~043301-3.
[4].本實驗室論文: 105年-吳幼琦. “合成應用於溶液製程高分子太陽能電池的含苯並[1,2-b:4,5-b’]二噻吩基共聚物”.
[5].Yin, H.; Cheung, S. H.; Ngai, J. H. L.; Ho, C. H. Y.; Chiu, K. L.; Hao,X.; Li, H. W.; Cheng, Y.; Tsang, S. W.; So, S. K., “Thick-Film High-Performance Bulk-Heterojunction Solar Cells Retaining 90% PCEs of the Optimized Thin Film Cells“, Adv. Electron. Mater. 2017, 1700007.
[6].He, Y.J.; Chen, H. Y.; Hou, J. H.; Li, Y. F., “Indene-C60 Bisadduct: A New Acceptor for High-Performance Polymer Solar Cells”, J. Am. Chem. Soc. 2010, 132, 1377-1382.
[7].Li, S.; Ye, L.; Zhao,W.; Zhang, S.; Mukherjee, S.; Ade, H.; Hou, J. H., “Energy-Level Modulation of Small-Molecule Electron Acceptors to Achieve over 12% Efficiency in Polymer Solar Cells”, Adv. Mater. 2016, 28, 9423-9429.
[8].Siddiki, M. K.; Li, J.; Galipeau, D.; Qiao, Q., “A Review of Polymer Multijunction Solar Cells”, Energy Environ. Sci. 2010, 3, 867-883.
[9].Li, G.; Zhu, R.; Yang, Y., “Polymer Solar Cells”, Nature Photons. 2012, 6, 153-161.
[10].Scharber, M. C.; Mühlbacher, D.; Koppe, M.; Denk, P.; Waldauf, C.; Heeger, A. J.; Brabec, C. J., “Design Rules for Donors in Bulk- Heterojunction Solar Cells-Towards 10% Energy-Conversion Efficiency”, Adv. Mater. 2006, 18, 789-794.
[11].Li, G.; Rui, Z.; Yang, Y., “Polymer Solar Cells”, Nature Photonics.2012, 6, 153-161.
[12].Cheng, Y.; Yang, S.; Hsu, C., “Synthesis of Conjugated Polymers for Organic Solar Cell Applications”, Chem. Rev. 2009, 109, 5868-5923.
[13].Yu, G.; Gao, J.; Hummelen, J.; Wudl, F.; Heeger, A. J., “Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions”, Science. 1995, 270, 1789-1791.
[14].Li, Y., “Molecular Design of Photovoltaic Materials for Polymer Solar Cells: Toward Suitable Electronic Energy Levels and Broad Absorption”, Acc. Chem. Res. 2012, 45(5), 723-733.
[15].Zhao, W.; Li, S.; Yao, H.; Zhang, S.; Zhang, Y.; Yang, B.; Hou, J. H., “Molecular Optimization Enables over 13% Efficiency in Organic Solar Cells”, J. Am. Chem. Soc. 2017, 139, 7148-7151.
[16].Wu, Y. Q.; Chen, H. C.; Yang, Y. S.; Chang, S. H.; Wu, C. G., “Comprehensive Study of Pyrido[3,4-b]pyrazine-Based D−π–A Copolymer for Efficient Polymer Solar Cells”, Journal of Polymer Science. 2016, 54, 1822-1833.
[17].Gu, J.; Yuan, J.; Ma, W., “Correlation between Polymer Molecular Weight and Optimal Fullerene in Efficient Polymer Solar Cells”, Org.Electron. 2016, 34, 229-236.
[18].Ye, L.; Zhang, S.; Huo, L.; Zhang, M.; Hou, J. H., “Molecular Design toward Highly Efficient Photovoltaic Polymers Based on Two-Dimensional Conjugated Benzodithiophene’’, Acc. Chem. Res. 2014, 47, 1595-1603.
[19].Jo, J. W.; Bae, S. H.; Liu, F.; Russell, T. P.; Jo, W. H., “Comparison of Two D−A Type Polymers with Each Being Fluorinated on D and A Unit for High Performance Solar Cells”, Adv. Funct. Mater. 2015, 25, 120-125.
[20].Cui, C.; Wong, W. Y.; and Li. Y. F., “Improvement of Open-circuit Voltage and Photovoltaic Properties of 2D-Conjugated Polymers by Alkylthio Substitution”, Energy Environ. Sci. 2014, 7, 2276-2284.
[21].Kawashima, K.; Fukuhara, T.; Suda, Y; Suzuki, Y.; Koganezawa, T.; Yoshida H.; Ohkita, H.; Osaka, I.; Takimiya, K., “Implication of Fluorine Atom on Electronic Properties, Ordering Structures, and Photovoltaic Performance in Naphthobisthiadiazole-Based Semiconducting Polymers”, J. Am. Chem. Soc. 2016, 138, 10265-10275.
[22].Carsten, B.; He, F.; Son, H. J.; Xu, T.; Yu, L., “Stille Polycondensation for Synthesis of Functional Materials”, Chem. Rev. 2011, 111, 1493-1528.
[23].http://highscope.ch.ntu.edu.tw/wordpress/?p=52090 , August 15th,2017.
[24].Wang, N.; Chen, W.; Shen, W.; Duan, L.; Qiu, M.; Wang, J.; Yang, C.; Dua, Z.; Yang, R., “Novel Donor–Acceptor Polymers Containing o-Fluoro-p-Alkoxyphenyl-Substituted Benzo[1,2-b:4,5-b′]dithiophene Units for Polymer Solar Cells with Power Conversion Efficiency Exceeding 9%”, J. Mater. Chem. A. 2016, 4, 10212-10222.
[25].He, Y.; Zhao, G.; Bo, P.; Li, Y., “High-Yield Synthesis and Electro chemical and Photovoltaic Properties of Indene-C 70 Bisadduct”, Adv. Funct. Mater. 2010, 20, 3383-3389.
[26].Yao, Y.; Dong, H.; Hu, W., “Ordering of Conjugated Polymer Molecules: Recent Advances and Perspectives”, Polym. Chem. 2013, 4, 5197-5205.
[27].http://www.amercrystalassn.org/documents/2014%20Meeting/YagerACA_05.pdf , August 15th, 2017.
[28].Li, W.; Yang, L.; Tumbleston, J. R.; Yan, L.; Ade, H.; You, W., “Controlling Molecular Weight of a High Efficiency Donor-Acceptor Conjugated Polymer and Understanding its Significant Impact on Photovoltaic Properties”, Adv. Mater. 2014, 26, 4456-4462.
[29].Huo, L.; Liu, T.; Fan, B.; Zhao, Z.; Sun, X.; Wei, D.; Yu, M.; Liu, Y.; Sun, Y., “Organic Solar Cells Based on a 2D Benzo [1,2-b:4,5-b′]difuranConjugated Polymer with High-Power Conversion Efficiency”, Adv. Mater. 2015, 27, 6969-6975.
[30].Tseng, W. H.; Chen, H. C.; Chien, Y. C.; Liu, C. C.; Peng, Y. K.; Wu, Y. S.; Chang, J. H.; Liu, S. H.; Chou, S. W.; Liu, C. L.; Chen,Y. H.; Wu C. I.; Chou, P. T., “Comprehensive Study of Medium-Bandgap Conjugated Polymer Merging a Fluorinated Quinoxaline with Branched Side Chains for Highly Efficient and Air-Stable Polymer Solar Cells”, J. Mater. Chem. A. 2014, 2, 20203-20212.
[31].Inaba1, K.; Kobayashi1, S.; Uehara, K.; Okada, A.; Reddy, S. L.; Endo,T., “High Resolution X-Ray Diffraction Analyses of (La,Sr)MnO3/ZnO/Sapphire (0001) Double Heteroepitaxial Films”, Advances in Materials Physics and Chemistry, 2013, 3, 72-89.
[32].Wang, Rui.; Di, Z. Y.; Buschbaum, M. P.; Frielinghaus, H., “Effect of PCBM Additive on Morphology and Optoelectronic Properties of P3HT-b-PS Films”, DOI: 10.1016/j.polymer.2017.06.016.
[33].Ye, L.; Zhang, S.; Qian, D.; Wang, Q.; Hou J. H., “Application of Bis-PCBM in Polymer Solar Cells with Improved Voltage”, J. Phys. Chem. C. 2013, 117, 25360-25366.
[34].Zhu, H. B.; Wu, Y. F.; Zhang, G.; Lou, Y. B.; Hu. J., “Side- Chain- Modulated Supramolecular Assembly Between CuX2 (X = Cl, Br) and Quasi-Planar p-Conjugated Organic Synthons of 1, 3, 5-tris(2-alkylthiolpyrimidinyl)benzene: Crystal Structures and Conductive Properties”, Polyhedron. 2015, 85, 60-68.
[35].Jo, J. W.; Jung, J. W.; Jung, E. H.; Ahn, H.; Shin, T. J.; Jo, W. H., “Fluorination on Both D and A Units in D-A Type Conjugated Copolymers Based on Difluorobithiophene and Benzothiadiazole for Highly Efficient Polymer Solar Cells”, Energy Environ. Sci. 2015, 8, 2427-2434.
[36].Wang, Z.; Li, Z.; Liu, J.; Mei, J.; Li, K.; Li, Y.; Peng, Q., “Solution-Processable Small Molecules for High-Performance Organic Solar Cells with Rigidly Fluorinated 2,2-Bithiophene Central Cores”, ACS Appl. Mater. Interfaces. 2016, 8, 11639-11648.
[37].Zhang, S.; Qin,Y.; Uddin, M. A.; Jang, B.; Zhao,W.; Liu, D.; Woo, H. Y. Hou. J. H., “A Fluorinated Polythiophene Derivative with Stabilized Backbone
Conformation for Highly Efficient Fullerene and Non-Fullerene Polymer Solar Cells”, Macromolecules. 2016, 49, 2993−3000.
[38].Xiao, Z.; Sun, K.; Subbiah, J.; Qin, T.; Lu, S.; Purushothaman, B.; Jones, D. J.; Holmes, A. B.; Wong, W. W. H., “Effect of Molecular Weight on the Properties and Organic Solar Cell Device Performance of a Donor–Acceptor Conjugated Polymer”, Polym. Chem. 2015, 6, 2312-2318.
[39].http://controlequipment.com.au/wp-content/uploads/2016/01/AC-2.pdf ,August 15th, 2017.
[40].本實驗室論文: 105年-楊昀修. “探討階梯式五環芳烴高分子使用溶液製程法應用於高效率有機光伏電池”. 28-29.