| 研究生: |
張佳瑄 Jia-Xuan Chang |
|---|---|
| 論文名稱: |
亞洲氣膠特性實驗-台灣北海岸春季氣膠光學特性 |
| 指導教授: |
李崇德
Chung-Te Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程研究所 Graduate Institute of Environmental Engineering |
| 畢業學年度: | 89 |
| 語文別: | 中文 |
| 論文頁數: | 117 |
| 中文關鍵詞: | 氣膠散光係數 、氣膠粒徑分布 、輻射強度 、氣膠 、氣象 、氣膠化學性質 |
| 外文關鍵詞: | aerosol light-scattering coefficient |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
研究顯示石門地區氣膠的散光性質(σsp)、粒徑分布與當地的風向有很大的關係。在盛行從海面而來氣流(以下稱之為海風)的期間,氣膠的體積濃度主要來自於超微米(super-micrometer)的微粒,平均的σsp為0.0826km-1;而當風向轉移成從陸地而來的氣流(以下稱之為陸風)時,氣膠的總體積濃度較海風小,主要為次微米(sub-micrometer)的氣膠,平均的σsp為0.101 km-1。此外,氣膠散光係數、數目濃度、體積濃度的平均值也會隨著假日與平日有顯著的變化。
於石門採樣期間共採集到三次沙塵暴(由環保署公告)氣膠散光係數以及粒徑分布資料。三月沙塵暴的平均σsp為0.3438 km-1、四月沙塵暴的σsp為0.1283 km-1、五月沙塵暴的σsp為0.1681 km-1,雖然四月份的沙塵暴較為猛烈,但是所造成的散光效應並不是特別顯著,這是由於超微米氣膠所佔比例較多的原因所導致。
由於氣膠化學組成的多變性,氣膠對太陽輻射同時具有散射(冷卻)與吸收(增溫)的能力。氣膠對於太陽輻射的冷卻效應主要與氣膠的反射輻射回大氣層有關,而氣膠的反射又與氣膠的化學組成有著連帶的關係。由於氣膠不同的化學組成之生存期並不相同,所以氣膠的反射率會隨著時間以及空間的不同而有所變化。氣膠反射率與氣膠的光學性質有關,定義為氣膠的散射效應對於消光效應的比值。由高雄小港(1999)、台北氣象局(2000)與石門(2001)於採樣時期分析氣膠化學組成發現,高雄小港的氣膠平均反射率為0.87,台北氣象局的氣膠平均反射率為0.816,石門的氣膠平均反射率為0.915。由研究結果顯示,氣膠反射率大於0.85時,氣膠對於太陽輻射有冷卻的效應,所以高雄以及石門地區大氣有降溫的可能性。
The results show the light scattering coefficient (ssp) and size distribution of aerosols are related to local wind direction. For predominant airflow from the sea, aerosol volume is mainly contributed from super-micrometer particles with an average ssp at 0.083km-1. As the wind shifted from the sea to from the land, aerosol volume is turned to the control of sub-micron particles having an average ssp at 0.101km-1. In addition, aerosol ssp, number concentration, and volume concentration are distinguished between holidays and non-holidays.
During the intensive study period, Taiwan Environmental Protection Administration announced three dust storm events. The average ssp during the dust storm event was 0.344km-1 in March, 0.128km-1 in April, and 0.168km-1 in May. Although the dust storm in April was the strongest, the aerosol ssp was not correspondingly high which was due to the majority existence of low scattering efficiency super-micron particles.
Owing to its various chemical compositions, atmospheric aerosol is capable of both scattering (cooling) and absorbing (heating) solar radiation. The cooling effect is related to the backscattering of radiation to the upper atmosphere. A critical value of aerosol albedo (defined as the ratio of aerosol light-scattering coefficient to extinction coefficient) to have negative radiative forcing (and thus cooling) is found at 0.85. For the historical data and date from this study, the average albedo was calculated at 0.87 in Kaohsiung City, 0.82 in Taipei, and 0.92 at Shi-Men, respectively. Consequently, a radiative cooling by the atmospheric aerosol in Kaohsiung City and Shi-Men is evidentable.
王俊凱﹙2000﹚「台灣地區大氣氣膠特性之研究─高雄、台北都會區氣膠特性與污染來源推估」,國立中央大學環境工程研究所碩士論文。
宋鎮宇﹙2000﹚「台灣地區大氣氣膠之研究─高雄與台北都會區氣膠特性與散光係數」,國立中央大學環境工程研究所碩士論文。
林立偉﹙1999﹚「墾丁地區氣膠粒徑分不與氣象因子對散光係數影響之研究」,國立中央大學環境工程研究所碩士論文。
黃瓊慧﹙2001﹚「台灣地區大氣氣膠特性之研究─台北高雄地區單顆粒氣交予混合相氣膠污染來源推估」,國立中央大學環境工程研究所碩士論文。
Anderson, T. L. and Ogren. J. A., 1998. Determination aerosol radiative properties using the TSI 3563 Integration Nephelometer. Aerosol Science and Technology, 29, 59-69.
Boucher, O. and Anderson, T. L., 1995. General circulation model assessment of the sensitivity of direct climate forcing by anthropogenic sulfate aerosols to aerosol size and chemistry. J.Geophys. Res., 100, 26,117-26,134.
Cahill, T.A., 1996. Climate forcing by anthropogenic aerosols: the role for PIXE. NIMB., 109, 402-406.
Carrico, C.M., Rood, M.J., Orgen, J.A., Neusub, C. Wiedensohler, A. and Heintzenberg, J., 2000. Aerosol optical properties at Sagres, Portugal during ACE-2. Tellus, 52B, 694-715.
Chan, Y.C., Simpson, R.W., Mctainsh, G.H., Vowles, P.D., Cohen, D.D. and Bailey, G.M., 1999. Source apportionment of visibility degradation problems in Brisbane (Australia) using the multiple linear regression technniques. Atmospheric Enviroment, 33, 3237-3250.
Charlson, R.J., Schwartz, S.E., Hales, J.M., Cess, R.D., Coakley, J.A. JR., Hansen, J.E. and Hofmann, D.J., 1992. Climate forcing by anthropogenic aerosols. Science,. 255, 423-430.
Cofer Ⅲ, W.R., Anderson, B.E., Winstead, E.L. and Bagwell, D.R., 1998. Calibration and demonstration of condensation nuclei counting system for airborne measurements of aircraftt exhausted particles. Atmospheric Enviroment. 32, 169-177.
Dickerson, R.R., Kondragunta , S., Stenchikov, G., Civerolo, K.L., Doddridge, B.G. and Holben, B.N., 1997. The impact of aerosols on solar ultraviolet radiation and photochemical smog. Science., 278, 827-830.
Fiocco, G., Grams, G. and Mugnai, A., 1976. Energy Exchange and temperature of aerosols in the earth''s atmosphere (0-60km). J. Atmos. Sci., 33, 2415-2424.
Gebhart, K. A., Malm, W. C., and Day, D., 1994. Examination of the effects of sulfate acidity and relative humididty on light scattering at Shenandoah National Park. Atmospheric Enviroment., 28, 841-849.
Hanel, Gottfried., 1998. Vertical profiles of the scattering coefficient of dry atmospheric particles over Europe normalized to air at standard temperature and pressure. Atmospheric Environment, 32, 1743-1755.
Haywood, J.M. and Shine. K.P., 1995. The effect of anthropogenic sulfate and soot aerosol on the clear sky planetary radiation budget. Geophys. Res. Lett., 22, 603-606.
Heintzenberg, J., 1995. Aerosol and climate change. J. Aerosol Sci., 26, s1-s2.
Hitzenberger, R., Berner, A., Dusek, U. and Alabashi, R., 1997. Humidity-dependent growth of size-segregated aerosol samples. Aerosol Science and Technology, 27, 116-130.
Horvath, H., 1997. Systematic deviations of light absorption measurements by filter transmission methods. J. Aerosol Sci., 28, 55-56.
Horvath, H., 1997. Experimental calibration for aerosol light absorption measurements using the integrating plate method-summary of the data. J. Aerosol Sci., 28, 1149-1161
Horvath, H., 1996. Spectral extinction coefficients of rural aerosol in southern Italy-A case study of cause and effect of variability of atmospheric aerosol. J. Aerosol Sci., 27, 437-453.
Kerminen, V-M., 1997. The effect of particle chemical character and atmospheric processes on particle hygroscopic properties. J. Aerosol Sci., 28, 121-132.
Kiehl, J.T. and Briegleb, B.P., 1993. The radiative roles of sulfate aerosols and greenhouse gases in climate forcing. Science., 260, 311-314.
Koloutsou-Vakakis, S., Carrico, C.M., Li, Z., Rood, M.J. and Ogren, J.A., 1999. Characterisation of aerosol properties and radiative forcing at an anthropogenically perturbed continental site. Phys. Chem. Earth ©., 24, 541-546
Kozlov, V.S., Pancchenko, M.V., Tumakov, A.G., Shmargunov, V.P. and Yausheva, E.P., 1997. Some peculiar, ties of the mutual variability of the content of soot and mubmicron aerosol in the near-ground air layer. J. Aerosol Sci., 28, 231-232.
Langmann, B., Herzog, M. and Graf, H-F., 1998. Radiative forcing of climate by sulfate aerosols as determined by a regional circulation chemistry transport model. Atmospheric Enviroment., 32, 2727-2768.
Liao, H. and Seinfeld, J.H., 1997. Effect of clouds on direct aerosol radiative forcing of climate. J. Aerosol Sci., 28, 425-426.
Liu, Y. and Daum, P.H., 2000. The effect of refractive index on size distributions and light scattering coefficients derived from optical particle counters. J. Aerosol Sci., 31, 945-957
Lowenthal, D.H., Chow, J.C. and Saxena, P., 2000. Contributions to light extinction during project MOHAVE. Atmospheric Enviroment, 34, 2351-2359.
Lowenthal, D.H., Rogers, C.F., Saxena, P., Watson, J.G. and Chow, J.C., 1995. Sensitivity of estimated light extinction coefficients to model assumptions and measurement errors. Atmospheric Enviroment, 29, 751-766.
Maenhaut, W., Cafmeyer, J., Ptasinski, J., Andreae, M.O., Andreae, T.W., Elbert, W., Meixner, F.X., Karnieli, A. and Ichoku, C., 1997. Chemical composition and light scattering of the atmospheric aerosol at a remote site in the Negev Desert, Israel. J. Aerosol Sci., 28, 73-74.
Malm, W. C. and Kreidenweis, S. M., 1997. The effect of models of aerosol hygroscopicity on the apportionment of extinctoin. Atmospheric Enviroment, 31, 1965-1976.
Marcazzan, G.M. and Persico, F., 1996. Evaluation of mixing layer depth in Milan town from temporal variation of atmospheric radioactive aerosols. J. Aerosol Sci., 27, 21-22.
Marshall, S.F., Covert, D.S. and Charlson, R.J., 1995. Relationship between asymmetry parameter and hemispheric backscatter ratio: implications for climate forcing by aerosols. Appl. Opt., 34, 6306-6311.
Mcmurry, P. H., Litchy, M., Huang, P., Cal, X., Turpin, B. J., Dick, W. D. and Hanson, A., 1996. Elememtal composition and morphplpgy of individual particles separated by size and hygroscopicity with the TDMA. Atmospheric Enviroment., 30, 101-108.
Meszaros, E., Molnar, A. and Ogren, J., 1998. Scattering and absorption coefficient v.s chemical composition of fine atmospheric aerosol particles under regional conditions in humidity. J. Aerosol Sci., 29, 1171-1178.
Nemesure, S., Wagener, R. and Schwartzm, S. E., 1995. Direct shortwave forcing of climate by the anthropogenic sulfate aerosol: sensitivity to particle size, composition, and relative humidity. J.Geophys. Res., 100, 26,105-26,116.
Onda, K., 1995. Prediction of scattering effect by ash polydispersion on spectral emission from coal-fired MHD combustion gas. J. Quant. Spectrsc. Radiat. Transfer., 53, 381-395
Pancchenko, M.V. and Terpugova, S.A., 1997. Reconstruction of the vertical profile of aerosol scattering coefficient in the mixing layer. J. Aerosol Sci., 28, 239-240.
Pancchenko, M.V., Tumakov, A.G., Terpugova, S.A. and Yausheva, E.P., 1996. Investigation of the parameter of aerosol condensation activity in different geographical regions of the former soviet union. J. Aerosol Sci., 27, 70-80.
Penner, J.E., Dickinson, R.E. and O''Neill, C.A., 1992. Effect of aerosol from biomass burning on the global radiation budget. Science, 256, 1432-1433.
Pitchford, M. L. and McMurry, P.H., 1994. Relationship between measured water vapor growth and chemistry of atmospheric aerosol for Grand Canyon, Arizona, in winter 1990. Atmospheric Enviroment., 28, 827-839.
Quinn, P.K., Marshall, S.F., Bates, T.S., Covert, D.S. and Kapustin, V.N., 1995. Comparsion of measured and calculated aerosol properties relevant to the direct radiative forcing of tropospheric sulfate aerosol on climate. J. Geophys. Res., 1, 8977-8991.
Schwartz, S.E., 1996. The whitehouse effect-shortwave radiative forcing of climate by anthropogenic aerosols: an overview. J. Aerosol Sci., 27, 359-382.
Smith, D.J.T., Harrison, R.M., Luhana, L., Pio, C.A., Castro, L.M., Tariq, M.N., Hayat, S. and Quraishi, T., 1996. Concentrations of particulate airborne polycyclic aromatic hydrocarbons and metals collected in Lahore, Pakistan. Atmospheric Enviroment, 30, 4031-4040.
Stein, S. W., Turpin, B. J., Cal, X., Huang, P. and McMurry, P. H., 1994. Measurements of relative humidity-dependent bounce and density for atmospheric particles using the DMA-Impactor technique. Atmospheric Enviroment., 28, 1739-1746.
Szymanski, W.W., 1996. Experimental determination of light diffusion coefficient in optically dense aerosols. J. Aerosol Sci., 27, 529-530.
Terpugova, S.A. and Panchenko, M.V., 1995. On the estimate of aerosol mixing layer height on the base of correlation of aerosol scattering coefficient. J. Aerosol Sci., 26, 349-350.
Trakumas, S., Juozaitis, A., Buzorius, G., Girgzdys, A. and Ulevicius, V,. 1995. Investigation of hygroscopical properties of atmospheric aerosol particle. J. Atmos. Sci., 26, 371-372.
Weingartner, E., Baltensperger, U. and Burtcher, H., 1995. Growth and structural changes of combustion aerosols at high relative humidity. J. Atmos. Sci., 26, 667-668.
Wiscombe, W. J. and Grams, G. W., 1976. The backscattered fraction in two-stream approximations. J. Atmos. Sci., 33, 2400-2451.
Zhang, X. Q., McMurry, P.H., Hering, S. V. and Casuccio, G. S., 1993. Mixing characteristics and water content of submicron aerosols measured in Los Angeles and at the Grand Canyon. Atmospheric Enviroment., 27A, 1593-1607.