跳到主要內容

簡易檢索 / 詳目顯示

研究生: 徐若韶
Ruoh-Shaur Hsyu
論文名稱: 電致發光電池中電解質的結構與物性探討
指導教授: 諸柏仁
Po-Jen Chu
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學學系
Department of Chemistry
畢業學年度: 88
語文別: 中文
論文頁數: 144
中文關鍵詞: 電致發光電池有機共軛高分子高分子電解質
外文關鍵詞: Light-emitting Electrochemical Cell, LEC, Organic conjugated polymer, polymer electrolyte
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 我們的研究顯示PdOPV (poly(dioctyloxy phenylene vinylene))為PPV上烷氧基雙取代之聚合物,其最大吸收波長(λmax)為592nm,玻璃轉移溫度(Tg)在0℃。
    將PdOPV與PEO(poly ethylene oxide)及LiClO4混摻後即成為所需之電解質。其UV及PL光譜往紅位移方向移動,是由於PEO促使PdOPV分子立體規則提高,增加有效共軛長度所致。
    而IR光譜則顯示兩種高分子之間並無強分子間作用力存在。但由13C NMR光譜中化學位移的變化見到高分子介面的形成。7Li NMR則清楚地知道鋰離子在混摻系統各成分中的含量,隨著不同的混摻比例及不同的溫度變化而有顯著的改變。
    我們更藉由半高寬得到活化能(Ea)的資訊,並配合AFM的表面分析,我們得到鋰離子在PdOPV及PEO之間的配位結構,以及PdOPV中的鋰離子是藉由PEO區塊而進入其中的傳導機制。這些是首次將核磁共振法應用於LEC電解質所獲致的成果。



    Alkoxy ring-substituted PPV, poly(dioctyloxy phenylene vinylene) (PdOPV), emits on orange light (λmax, PL = 592 nm) region. The glass-transition temperature is at 0℃ for all LEC samples.
    The electrolytes are blended from PdOPV with poly(ethylene oxide)(PEO) and LiClO4. PEO improves regulations and increases the effective conjugating length of PdOPV, so the UV and PL spectra have red shift.
    IR spectra show that there are no strong molecular forces between two polymers. From the variations of chemical shift in 13C NMR spectra we can observe the formation of interface between polymers. The contents of lithium in blending systems are changed obviously with changing blending ratios and temperature.
    The activation energy (Ea) obtained form half-height width of NMR. Surface analyses from AFM and Ea values can realize the coordination structure of lithium between PdOPV and PEO. In concluded, we have found that the transformation mechanism of lithium in PdOPV domain is controlled by PEO domain. For the first time, electrolytes of LEC is characterized by solid state NMR and AFM.

    目錄…………………………………………………………………………I 中文摘要………………………………………………………………….. V 英文摘要…………………………………………………………………..VI 表目錄…………………………………………………………………….VII 圖目錄……………………………………………………………………VIII 第一章 緒論………………………………………………………………..1 1-1 前言………………………………………………………………….1 1-2 共軛高分子之電子結構與能帶理論……………………………….2 1-3 理論………………………………………………………………….4 1-3-1 螢光理論………………………………………………………..4 1-3-1.1 螢光形成原因……………………………………………...4 1-3-1.2 影響螢光的因素………………………………………….6 1-3-2 金屬半導體理論………………………………………………7 1-3-2.1 金屬-半導體接合…………………………………………..8 1-3-2.2 電流輸送過程……………………………………………...9 1-3-3 NMR理論………………………………………………………10 1-4 本文目的……………………………………………………………13 圖表/第一章…………………………………………………………..14 第二章 文獻回顧………………………………………………………….19 2-1 PPV及其衍生物…………………………………………………….19 2.2取代PPV之結構與物性…………………………………………….20 2-3 高分子發光二極體…………………………………………………21 2-3-1 前言……………………………………………………………21 2-3-2 發光原理………………………………………………………21 2-3-3 多層發光二極體………………………………………………24 2-3-4 摻雜發光二極體─電致發光電池…………………………..25 圖表/第二章…………………………………………………………..27 第三章 實驗及其技術原理……………………………………………….31 3-1 微差掃瞄卡計原理…………………………………………………31 3-1-1 利用DSC測量混摻高分子玻璃轉移溫度之原理探討……...32 3-1-2 利用DSC測量混摻高分子熔解熱下降原理探討………….32 3-2 導電度值測量裝置及原理…………………………………………33 3-3 固態核磁共振儀應用在混摻高分子電解質之原理……………..34 3-3-1 去耦合作用…………………………………………………..35 3-3-2 魔角旋轉……………………………………………………..36 3-3-3 四極矩核種的重要性………………………………………..38 3-3-3.1 四極矩核種的概觀………………………………………39 3-3-3.2 半整數四極矩核種中間峰的線型模擬計算…………...40 3-3-4 弛緩過程……………………………………………………..41 3-4 原子力顯微術原理………………………………………………..44 3-5 實驗內容…………………………………………………………..45 3-5-1 藥品…………………………………………………………..46 3-5-2 混摻高分子電解質之製備…………………………………..47 3-5-2.1 Poly(dialkoxy phenylene vinylene)之合成……………...47 3-5-2.2 高分子電解質之摻和…………………………………...51 3-6 元件製作…………………………………………………………..51 3-7 儀器設備及實驗參數……………………………………………..52 圖表/第三章…………………………………………………………..56 第四章 結果與討論……………………………………………………….65 4-1 PdOPV相關物性的探討………………………………………….65 4-1-1 熱重損失分析………………………………………………..65 4-1-2 微差掃瞄卡計分析……………………………………..……65 4-1-3 紫外光-可見光及螢光光譜分析…………………………….66 4-2 微差掃瞄卡計分析………………………………………………..68 4-3 紅外線光譜的研究………………………………………………..70 4-4 固態核磁共振光譜分析…………………………………………..73 4-4-1 7Li NMR光譜………………………………………………...73 4-4-2 CP/MAS NMR光譜………………………………………..76 4-4-3 鋰離子在混摻系統中之活化能……………………………..78 4-5 螢光光譜分析……………………………………………………..84 4-5-1 紫外光-可見光光譜…………………………………………...84 4-5-2 螢光光譜……………………………………………………..85 4-6 表面型態分析……………………………………………………..86 4-7 結論………………………………………………………………..87 圖表/第四章…………………………………………………………..91 第五章 總結及未來展望………………………………………………...135 參考文獻………………………………………………………………….139

    1. J. S. W. Chien, "Polyacetylene: Chemistry, Physics, and Material Science", Academic Press, Orlando, 1984.
    2. J. H. Burroughes, D. D. C. Bradley, A. R Brown, R. N. Marks, K Mackay, R. K. Friend, P. L. Burns, A. B. Holmes, Nature, 347 (1990), 539.
    3. H. H. Horhold, M. Helbig, Makromol. Chem., Macromol. Symp., 12 (1987) 229.
    4. "Polymer material promises an inexpensive and thin full-color light-emitting plastic display", Electronic Design, 8 (1996), 42.
    5. C. Kittel, “ Introduction to Solid State Physics ”, 6th ed., John Wiley & Son, Singapore (1986).
    6. T. A. Skotheim, Marcel Dekker, “Handbook of Conducting Polymers Vol. 1? ”, New York, 1986.
    7. D. A. Skoog, and D. M. West, “ Fundamentals of Analytical Chemistry ”, 3rd 1976.
    8. E. H. Rhoderick and R. H. Williams, “ Metal-Semiconductor Contact ”, 2nd edition, Clarendon press, Oxford, 1988.
    9. 任修平,中央大學化學研究所碩士論文,88年6月。.
    10. R. A. Wessling, R. G. Zimmermann, “ United States Patent Office ”, US Patent 1986, 3401152.
    11. R. A. Wessling, J. Polymer. Sci. Polym. Syn., 72 (1985), 55.
    12. D. R. Gagnon, F. E. Karasz, Polymer, 28 (1987), 567
    13. H. H. Horhold, M. Helbig, Macromol. Chem., Macromol. Symp., 12 (1987), 229.
    14. M. Helbig, H. H. Horhold, Macromol. Chem., 194 (1993), 1607
    15. H. H. Horhold, H. R. Manfred, J. Opfermann, Makromol. Chem., 7 (1968), 613.
    16. H. H. Horhold, M. Helbig, Macromol. Chem., 12 (1987), 229
    17. D. D. C. Bradley, J. Phys. D: Appl. Phys., 20(1987),1389.
    18. Z. Bao, Y. Chen, R. Cai, L. Yu, Macromolecules, 26 (1993), 5281.19.
    20. D. Braun, A. J. Heeger, Appl. Phys. Lett., 58 (1991), 1982
    21. Z. Yang, I. Sokolik, F, E. Karasz, Macromolecules, 26 (1993), 1188
    22. Z. Yang, F. E. Karasz, H. J. Geise, Macromolecules, 26 (1993), 6570.
    23. A. Delmotte, M. Biesemans, H. Raheir, M. Gielen, Syn. Met., 58 (1993), 325.
    24. W. J. Swatos. B. Gordon, Polym. Preprinter, (1993).
    30. S. Doi, M. Kuwabara, T. Noguchi, Syn. Met., 55-57 (1993), 4174.
    31. C. W. Tang and S. A. Vanslyke, Appl. Phys. Lett., 51 (1987), 914
    32. I. L. Hummelgen, L. S. Roman, F. C. Nart, L. O. Peres, E. L. Sa, Appl. Phys. Lett., 68 (1996), 3194.
    33. I. D. Parker, A. J. Heeger, J. Appl. Phys., 75 (1994), 1656.
    34. I. L. Hummelgen, L. S. Roman, F. C. Nart, L. O. Peres, E. L. Sa, Appl. Phys. Lett., 68 (1996), 3194.
    35. P. W. M. Blom, M. J. M. de Jone, J. J. M. Vleggaar, Appl. Phys. Lett., 68 (1996) 3308.
    36. A. R Brown, D. D. Bradley, J. H. Burroughes, Appl. Phys. Lett., 61 (1992), 2793.
    37. N. C. Greenham, D. D. C. Bradley, Nature, 365 (1993), 628.
    38. I. D. Parker, Q. Pei, Appl. Phys. Lett., 65 (1994), 1272.
    39. Q. Pei, G. Yu, C. Zhang, Y. Yang, A J. Heeger, Science. 269 (1995) 1086.
    40. Q. Pei, Y. Yang, G. Yu, C. Zhang, A. J. Heeger, J. Am. Chem. Soc., 118 (1996) 3922.
    41. Y. Cao, G. Yu, A. J. Heeger, Appl. phys. Lett., 68 (l996), 3218.
    42. Y. Yang, Q. Pei, App1. Phys. Lett., 68 (1996), 2708.
    43. J. F. Rabek, “Experimental Methods in Polymer Chemistry ”, New York, (1980).
    44. P. R. Couchman and F. E. Karasz, Polymer, 38 (1997), 459-462.
    45. L. A. Utracki, Advanced Polymer Technology, 5 (1985), 33.
    46. J. M. Pochan, C. L. Beatty and D. F. Pochan, Polymer, 20 (1979), 879.
    47. M. Gordon and J. S. Taylor, Journal of Applied Chemistry, 2 (1952), 493.
    48. T. G. Fox, Journal of Applied Bulletin American Physical Society, 1 (1956), 123.
    49. S. Vleehouwers, J. E. Kluin, J. D. Mcgervey, A. M. Jamieson and R. Simha, Journal of Polymer Science: Part B: Polymer Physics, 30 (1992), 1429-1435.
    50. J. Clauss, K. Schmidt-Rohr and H. W. Spiess, Acta Polymer, 44 (1993), 1-17.
    51. T. E. Sukhanova, J. Urban, et. al., Journal of Materials Science, 30 (1995), 2201-2214.
    52. Z. Xiaoqing, S. Masahiko and T. Akinobu, Polymer, 35 (1994), 4280-4286.
    53. Z. Xiaoqing and S. David H., Macromolecules, 27 (1994) , 4919-4926.
    54. K. Erdmann, W. Czerwinski, B. C. Gerstein, and M. Pruski, Journal of Polymer Science: Part B: Polymer Physics, 32 (1994), 1961-1968.
    55. K. J. McGrath, K. L. Ngai and C. M. Roland, Macromolecules, 28 (1995), 2825-2830.
    56. Z. Xiaoqing, K. Takegoshi and H. Kunio, Macromolecules, 25 (1992), 4871-4875.
    57. White Jeffery L and M. Peter, Macromolecules, 26 (1993), 3049-3054.
    58. L. Mathias, Solid State NMR of Polymer, 1991. (Plenum Press, New York)
    59. Z. Xiaoqing, K. Takegoshi and H. Kunio, Polymer, 33 (1992), 712-717.
    60. F. Maria, T. Van-Tan and S. Mark E., Polymer, 35 (1994), 1593-1600.
    61. J. Z. Hu, X. Wu, et. al., Solid State Nuclear Magnetic Resonance, 6 (1996), 187-196.
    62. 鄒德里, 科儀新知, 6 (1994), 88-96.
    63. N. Almeria and S. Alexandra, Macromolecules, 22 (1989), 4426-4430.
    64. E. Fukushima, S. B. W.Roeder, “Experimental Pulse NMR-A Nuts and Bolts Approach”, Addison-Wesley: Reading, 1981.
    65. R. N. Ibbett, “NMR Spectroscopy of Polymers Blackie Academic & Professional ”, New York, 1993.
    66. 張文宗, 台灣大學化學研究所碩士論文, 86年1月, 1頁.
    67. R. R. Ernst, G. Bodenhausen, A. Wokann, “Principle of Nuclear Magnetic Resonance in One and Two Dimensions ”, Clarendon: Oxford, 1987.
    68. K.Blum, “Density Matrix Theory and Applications ”, Plenum: New York, 1981.
    69. D. M. Brink, G. R. Satchler, “Angular Momentum ”, University Press: Oxford, 1962.
    70. N. Bloembergen, E. M. Purcell and R. V. Pound, Phys. Rev., 73 (1948), 679.
    71. M. E. Rose, “Elementary Theory of Angular Momentum ”, Wiley: New York, 1957.
    72. M. Mehring, “Principles of High Resonance NMR in Solids ”, Springer-Verlag, New York, 1983.
    73. J.Herzfeld, A. E. Berger, J. Chem. Phys. 73 (1980), 6021.
    74. 劉漢文, 中央大學化學系研究所, 85年6月, 13頁.
    75. A. Samoson, E. Kundle and E. Lippmaa, J. Magn. Reson., 49 (1982), 350.
    76. S. H. Askari, S. D. Rughooputh, F. Wudl, Syn. Met., 29 (1989), E129.
    77. J. Li, L. M. Pratt, and I. M. Khan, J. Poly. Sc.: Part A: Polymer Chemistry, 33 (1995), 657-1663.
    78. J. Li and I. M. Khan, Macromolecules, 26 (1993), 4544-4550.
    79. 方惠芬,中央大學化學研究所碩士論文,87年6月,109-116頁。
    80. C. Berthier, W. Gorecki, M. B. Armand, et. al., Solid State Ionics, 11 (1983), 91-107.
    81. Florian Muller- Plathe and Wilfred F. Van Gunsteren, J. Chem. Phys., 103 (1995), 4745-4755.
    82. X. Wei, M. Raikh, Z. V. Vardeny, Y. Yang and Morse, Phys. Rev. B, 49 (1994), 17480
    83. M. A. Dissanayake and R. Frech, Macromolecules, 28 (1995), 5312-5319.
    84. 郎長齡,中央大學化學研究所碩士論文,86年6月。
    85. A. Johansson, A. Wendsjö and J. Tegenfeldt, Electrochimica Acta, 37 (1992), 1487.
    86. A. Johansson and J. Tegenfeldt, J. Chem. Phys., 104 (1996), 5317.
    87. Binesh Nader and S. V. Bhat, J. Polym. Sci.: Part B, Polym. Phys., 36 (1998), 1201-1209.
    88. The fitting uses commercial program "Table Curve 2D" released by Jandel Scientific Corporation, CA. U.S.A.
    89. W. H. Press, B. P. Flannery, S. A. Teukolsky and W. T.Vetering, " Numerical Recipes in C: The Art of Scientific Computing ", ppf. 542, Canbridge Press (1991).
    90. Patrik Johansson, Jörgen Tegenfeldt and Jan Lindgren, J. Phys. Chem. A., 102 (1998), 4660-4665.
    91. J. Spevacek, J. Dybal, Macromol. Rapid Commun., 20 (1999), 435
    92. J. Spevacek, L. Paternostre, P. Damman, A. C. Draye and M. Dosiere, Macromolecules, 25 (1998), 3612.
    93. G. S. Fulcher, J. Am. Chem. Soc., 8 (1925), 339.
    94. S. H. Chung, K. R. Jeffrey and J. R. Stevenson, J. Chem. Phys., (1991), 94.
    95. F. Croce, S. D. Brown, S. G. Greenbaum, S. M. Slane and M. Salomon, Chemistry of Materials, 5 (1993), 9.
    96. A. Abragam, "The Principles of Nuclear Magnetism ", (Clarendon, Oxford, 1961).

    QR CODE
    :::