跳到主要內容

簡易檢索 / 詳目顯示

研究生: 雲惟勝
Wei-Sheng Yun
論文名稱: 不含離子非水溶液之電動力學行為
Electrokinetics in Salt-Free Non-aqueous Solution
指導教授: 曹恒光
Heng-kwong Tsao
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
畢業學年度: 98
語文別: 中文
論文頁數: 91
中文關鍵詞: 電子紙毛細管電泳低介電係數電滲流
外文關鍵詞: capillary electrophoresis, electronic paper, electro-osmotic, low dielectric constant
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 一般來說,當粒子處於低介電係數溶劑中,因較強烈的庫倫作用力導致其反離子不易解離帶電。但是,電子紙卻是利用粒子在低介電係數溶液中解離並於施加電場後進行電泳。本論文主要利用毛細管電泳,研究在低介電係數溶液中,電滲流及電泳行為並配合理論推算,進而分析其解離原因、泳動速度及改善方法。
    低介電係數的溶劑在毛細管電泳中施予高電壓時,只產生微弱電流,可避免因產生焦耳熱所導致黏度下降進而影響電滲流及電泳的mobility,推測在電子紙中亦可有效避免焦耳熱造成的影響。利用熔融矽(二氧化矽)材質之毛細管,以不同比例的去離子水,乙醇溶液、丙醇溶液及dioxan溶液可知,溶液黏度上升與介電係數降低造成電滲流mobility降低;並確認在低介電係數溶液下,毛細管可少量解離出離子產生電滲流,並經由數據回歸可得表面電荷密度與低介電係數溶劑之重量百分比成指數遞減關係,與介電係數成次方關係式。在電泳方面,利用理論計算與毛細管電泳實驗對照,證實處於低介電係數溶液中,粒子因表面電荷密度小,又為粒子半徑不大之關係,而使其泳動mobility緩慢,造成電滲流與電泳在毛細管電泳中之訊號重疊。
    因此,由實驗及理論可得電泳mobility與黏度成反比,與粒子半徑及表面電荷密度成正比。因此,只要粒子具有足夠的大小,即使在低介電係數的溶液中亦可解離。在電子紙系統中,粒子泳動速度越快,畫面反應時間就越快速。因此,要增加其泳動速度除了找尋在該溶劑下之電荷密度較高的粒子材料外,亦可從增加粒子半徑著手。


    In general, the dissociation of counterion from charged particle is difficult in a medium with low dielectric constant due to strong Coulomb attraction. However, in electronic paper, charged particles exist in low dielectric medium and migrate by application of an electric filed, so called electrophoresis. In this work, the electrophoretic mobility and the origin of counterion dissociation from charged particle are investigated by using capillary electrophoresis system through electro-osmosis in a salt-free and low dielectric constant medium, in which the Joule heat effect is insignificant under strong electric field due to low electric current.
    Owing to strong Coulomb interaction, the surface charge density (?) of silica particles in a salt-free and low dielectric constant medium is very small compared to that in water. Therefore, the electrophoretic mobility is essentially zero. Intuitively, it is anticipated that the electro-osmotic flow (EOF) is absent in a fused silica capillary because of the lack of counterions. We consider organic solvents with low dielectric constant (?), including ethanol (? = 24), propanol (? = 20), butanol (? = 19), tetrahydrofuran (? = 7), and dioxane (? = 2), and their mixtures with water. The dielectric constant of the mixture can be controlled by tuning the concentrations (c). It is interesting to find that EOF always occurs regardless of the dielectric constant. The mobility generally declines with increasing viscosity or decreasing dielectric constant. The relationship between surface charge density and dielectric constant can be described by surface charge decsity ~ exp(-ac) ~ (dielectric constant)^b.
    In conclusion, even in a salt-free and low dielectric constant medium, counterion dissociation always takes place and thus electrokinetic phenomena occur, as long as particles’ sizes are large enough. An example is EOF, which involves a very large surface area of an inner tube wall. Consequently, in order to increase the response time in e-paper applications, the electrophoretic mobility can be increased by increasing the surface charge density or particle size.

    摘要 I Abstract III 致謝 V 圖目錄 IX 表目錄 XI 第一章 緒論及文獻回顧 1 第二章 毛細管電泳(Capillary Electrophoresis, CE)介紹 6 2-1 毛細管電泳發展史 6 2-2 毛細管電泳裝置 7 2-2-1 毛細管(Capillary) 7 2-2-2 毛細管管徑與溫度關係 9 2-2-3 電源供應器(Power supply) 9 2-2-4 樣品注射方式 10 2-2-5 偵測器 11 2-3 毛細管區域電泳(Capillary Zone Electrophoresis,CZE) 12 2-4 毛細管電泳原理 12 2-4-1 電雙層理論 12 2-4-2 Zeta potential 14 2-4-3 電滲透(Electro-osmosis) 15 2-4-4 電滲流的優點 19 2-4-5 影響電滲流的因素 20 2-4-6 電泳(Electrophoresis) 21 2-4-7 焦耳熱效應 26 第三章 實驗介紹 28 3-1 實驗材料 28 3-2 實驗儀器 29 3-3 實驗步驟 30 第四章 結果與討論 33 4-1 焦耳熱效應(Joule Heat Effect)在系統中對電滲流的影響 33 4-2 不同溶劑與去離子水混合之電滲流行為 38 4-2-1 Salt-free乙醇和丙醇黏度對電滲流mobility的影響 39 4-2-2 Salt-free 1,4-dioxane黏度對電滲流mobility的影響 40 4-3 不同salt-free溶液的電滲流行為 49 4-4 毛細管管壁在電滲流中之電荷密度 55 4-5 在含電解質水溶液中之電泳行為 57 4-6 二氧化矽在去離子水與低介電係數媒介中之電泳 59 4-7 zeta電位分析儀測量電泳mobility 65 4-8 在低介電係數環境中之解離機制 68 4-9 在電子紙中的電泳行為 69 第五章 結論 71 第六章 參考文獻 72

    1. wikipedia:There''s Plenty of Room at the Bottom。取自http://en.wikipedia.org/wiki/There%27s_Plenty_of_Room_at_the_Bottom
    2. Iddo Genuth:The Future of Electronic Paper。2007年10月15日,取自http://thefutureofthings.com/articles/1000/the-future-of-electronic-paper.html
    3. Steve Ditlea著,電子紙爭雄記,翁秉仁譯,科學人,2002年5月號
    4. Eink:Howitworks。取自http://www.eink.com/technology/howitworks.html
    5. SiPix:Microcup® Electronic Paper。取自http://www.sipix.com/technology/epaper.html
    6. Barrett Comiskey, J. D. Albert, Hidekazu Yoshizawa& Joseph Jacobson,”An electrophoretic ink for all-printed reflective electronic displays”, NATURE ,VOL 394 |,16 JULY 1998.
    7. R.C. Liang, Jack Hou, HongMei Zang, and Jerry Chung,” Passive Matrix MicrocupÒ Electrophoretic Displays”, IDMC’03, Taipei, Liang, Paper Fr-17-5.
    8. 施雅茹、顧馨文、資策會,焦點報告:E-Reader關鍵IC發展趨勢分析,南港IC設計育成中心,2010年4月。
    9. Wenzhe Lu, Richard M, Cassidy, Anal. Chem. 65 (1993) 1694
    10. Beat Krattiger, Gerard J. M. Bruin, Alfredo E. Bruno, Anal. Chem. 66(1994) 1-8
    11. Andrea Weston, Phyllis R. Brown, Peter Jandik, Allan L. Heckenberg,William R. Jones, J. Chromatog. 608 (1992) 395
    12. Michael P. Harrold, Mary Jo Wajtusik, John Riviello, Patricia Henson,J. Chromatog. 640 (1993) 463
    13. Gary W. Slater, Sylvain J. Hubert, Electrophoresis 21 (2000) 3873
    14. Andrew G. Ewing, Ross A. Wallingford, Teresa M. Olegirowicz, Anal.Chem. 61 (1989) 292A
    15. G. M. McLaughlin, J. A. Noln, J. L. Lindahl, R. H. Palmieri, K. M.Anderson, J. Liquid Chrom. 15 (1992) 961
    16. Koji Otsuka, Shigeru Terebe, Teiichi Ando, J. Chromatog. 396 (1987)350
    17. J.W.Jorgenson and K.D.Lukacs,”Zone Electrophoresis in opentubular glass-capillart”, Analytical Chemistry,53,1296-1302,1981
    18. J.W.Jorgenson and K.D.Lukacs, Journal of high Resolution Chromatography and Chromatography Communication,4,230-231,1981
    19. 林文政、魏國佐,中性分子在微胞電動層析的樣品堆積,CHEMISTRY (THE CHINESE CHEM. SOC., TAIPEI) Sept. 2001 Vol. 59, No. 3, pp. 363~372
    20. M.J. Gordon, X. Huang, S.L. Pentoney, Jr. and R.N. Zare, “Capillary electrophoresis”, Science, 242, 224-228, October,1988.
    21. W.G. Kuhr, ”Capillary electrophoresis”, Analytical Chemistry, 62, 403R-414R, 1990.
    22. A.J. Tomlinson, et al., ”Investigation of the metabolism of the neuroleptic drug haloperidol by capillary electrophoresis”, Journal of Chromatography, 652, 417, 1993.
    23. K. Salomon, D.S. Burgi and J.C. Helmer, “Separation of 7 tricyclic antidepressants using capillary electrophoresis”, Journal of Chromatography, 549, 375-385, 1991.
    24. Y. Walbroehl and J.W. Jorgenson, “On-column UV absorption detector for open tubular capillary zone electrophoresis”, Journal of Chromatography, 315, 135-143, 1984.
    25. L.M. Benson, A.J. Tomlinson, J.M. Reid, D.L. Walker, M.M. Ames and S. Naylor, “Study of in vivo pyrazoloacridine metabolism by capillary electrophoresis using isotachophoresis preconcentration in non-aqueous separation buffer”, Journal of High Resolution Chromatoghaphy, 16, 324-326, 1993.
    26. R.S. Sahota and M.G. Khaledi, “Nonaqueous capillary electrophoresis”, Analytical Chemistry, 66, 1141-1146, 1994.
    27. T. Okada, “Non-aqueous capillary electrophoresis separation of polyethers and evaluation of weak complex formation”, Journal of Chromatography A, 695, 309-317, 1995.
    28. Mikkers F. E., Everaerts F. M., Verheggen T., J. Chromatogr. 169 (1979), 11-20
    29. Christine L. Copper, Journal of chemical Education. 75 (1998),343-347
    30. 王介光,溫度不敏感性之電動力學行為於毛細管區域電泳,國立中央大學,碩士論文,民國93年。
    31. Wikipedia,Hagen–Poiseuille equation,取自http://en.wikipedia.org/wiki/Hagen%E2%80%93Poiseuille_equation
    32. 張有義、郭蘭生,”膠體及界面化學入門”,高立圖書有限公司,台灣台北市,(1997)
    33. Hunter R.J., “Zeta Potential In Colloid Science”, Academic press, (1988)
    34. Probstein R.F., “Physicochemical Hydrodynaamic”, Wiley-Interscience, (1994)
    35. K. D. Lukacs, J. W. Jorgenson, J. High Res. Chromatog. 8 (1989),407-411
    36. Barbara B. VanOrman, Gary G. Liversidge, Gregory L. McIntire, Teresa M. Olefirowicz, Andrew G. Ewing, J. Microcol. Sep. 2 (1990), 176-180
    37. The measurement of Zeta Potential Using Electrophoresis, PCS Training Manual, (1998)
    38. Christine L. Copper, Journal of chemical Education. 75 (1998),343-347
    39. James W. Jorgenson, Krynn DeArman Lukacs, Anl. Chem. 53 (1981),1298-1302
    40. The Chemistry Department of Yale University, Journal of the American Chemical Society,1241,58,1936
    41. Christine Schwer and Ernst Kenndler, ANALYTICAL CHEMISTRY, VOL. 63, NO. 17, SEPTEMBER 1, 1991
    42. G. Curthoys1, V. Ya. Davydov, A. V. Kiselev, S. A. Kiselev and B. V. Kuznetsov, Journal of Colloid and Interface Science,Volume 48, Issue 1, July 1974, Pages 58-72

    QR CODE
    :::