跳到主要內容

簡易檢索 / 詳目顯示

研究生: 鄭智遠
Kenneth Tseng
論文名稱: 兆聲波輔助濕式清洗奈米探針側壁表面汙染研究
Surface Contamination Removal from the Side-wall of Nano-probe Using Wet Cleaning with Megasonic Waves
指導教授: 李雄
Shyong Lee
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 90
中文關鍵詞: 兆聲波奈米探針濕式清洗RCA SC-1微蝕刻表面微粗糙度
外文關鍵詞: Megasonic, Nano-probe, Wet cleaning RCA SC-1, Micro-etching, Surface roughness
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 兆聲波(Megasonic)輔助清洗可以在不破壞晶圓表面特徵條件下清洗奈米等級大小的微粒(Particle),因此要清洗奈米等級大小的奈米探針(Nano probe)就必須要使用兆聲波來輔助清洗。雖然濕式清洗RCA SC-1具有優異的去除微粒汙染效率,但是會造成晶圓微蝕刻(Etching)以及表面微粗糙度(Surface Roughness)影響後續的使用。使用兆聲波輔助RCA SC-1清洗,加強溶液清潔的均勻性,快速清洗晶圓表面,增加溶液的流動性,使表面不會如此粗糙,加強了清洗後的潔淨,而且不會造成表面傷害 。
    本研究中準備不同大小的奈米探針進行RCA SC-1清洗,分別直徑寬約為100nm、200nm及300nm,高寬比約1.5:1。實驗前後使用光學顯微鏡觀察是否清洗乾淨,再使用SEM觀察微粒是否還附著在奈米探針上、奈米探針的表面微粗糙度與奈米探針被RCA SC-1蝕刻的蝕刻量。


    Megasonic cleaning is possible to clean the nano-size particles without destroying the wafer surface characteristics. Therefore, cleaning the nano-size of the nano-probe must use to megasonic assist in cleaning. Wet cleaning RCA SC-1 has excellent removal efficiency of particulate contamination but it can cause wafer micro-etching and surface roughness which affect subsequent use. Using megasonic assists RCA SC-1 cleaning strengthens the uniformity of solution cleaning, quickly cleans the wafer surface, makes the surface not so rough after the clean, strengthens the clean after cleaning, and without causing damage to the surface.
    In this study, different sizes of nano-probes were prepared for RCA SC-1 cleaning. Respectively, the width of about 100nm、200nm and 300nm. Aspect ratio of about 1.5:1. Using an optical microscope to observe whether the clean before and after the experiment. SEM was used to observe whether the micro-particles attached to the nano-probe, the surface roughness, and the etching of the nano-probe by RCA SC-1.

    摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VIII 圖目錄 IX 第一章 : 緒論 1 1-1 研究背景與動機 1 1-2 研究目的及方法 2 第二章 :文獻回顧 3 2-1 超/兆聲波清洗 3 2-1-1 空蝕作用(Cavitation) 4 2-1-2 聲場流(Acoustic streaming) 8 2-1-3 邊界層(Boundary layer) 9 2-2 微粒的剝離機制 12 2-3 PH值與溫度影響 17 2-4 微矽蝕刻與表面微粗糙度 20 2-5 濕式清洗製成 22 第三章 :實驗與設備 29 3-1 實驗設備及材料 29 3-1-1 兆聲波清洗設備 29 3-1-2 加溫器具與溫度計 30 3-1-3 酸鹼值偵測計 31 3-1-4 化學藥劑 31 3-1-5 觀察器具 32 3-2 實驗 33 3-2-1. 實驗流程 36 3-2-2. 實驗方法 38 第四章 實驗結果與分析 40 4-1 試片一: OM觀察(APM,不加兆聲波) 40 4-1-1 試片一:全視圖(倍率50X) 40 4-1-2 試片一:奈米探針直徑300nm(倍率500X) 41 4-1-3 試片一:奈米探針直徑200nm(500X) 42 4-1-4 試片一:奈米探針直徑100nm(500X) 43 4-2 試片二:OM觀察(APM,加兆聲波) 44 4-2-1 試片二:全視圖(倍率50X) 44 4-2-2 試片二:奈米探針直徑300nm(倍率500X) 45 4-2-3 試片二:奈米探針直徑200nm(倍率500X) 46 4-2-4 試片二:奈米探針直徑100nm(倍率500X) 47 4-3 試片三:OM觀察(APM,第一次無兆聲波,第二次有兆聲波) 48 4-3-1 試片三:全視圖(倍率50X) 48 4-3-2 試片三:奈米探直徑300nm(倍率500X) 49 4-3-3 試片三:奈米探直徑200nm(倍率500X) 51 4-3-4 試片三:奈米探直徑100nm(倍率500X) 52 4-4 試片一:SEM觀察(APM,不加兆聲波) 53 4-4-1 試片一:奈米探直徑300nm(倍率8wX) 53 4-4-2 試片一:奈米探直徑200nm(倍率5wX) 54 4-4-3 試片一:奈米探直徑100nm(倍率8wX) 55 4-5 試片二:SEM觀察(APM,加兆聲波) 56 4-5-1 試片二:奈米探直徑300nm(倍率4wX) 56 4-5-2 試片二:奈米探直徑200nm(倍率6wX) 57 4-5-3 試片二:奈米探直徑100nm(倍率8wX) 58 4-6 試片三:SEM觀察(APM,第一次無兆聲波,第二次有兆聲波) 59 4-6-1 試片三:奈米探直徑300nm(倍率4wX) 59 4-6-2 試片三:奈米探直徑200nm(倍率6wX) 60 4-6-3 試片三:奈米探直徑100nm(倍率6wX) 61 4-7 實驗微蝕刻分析 62 第五章 結論 68 參考文獻 69

    1.黃英碩. 掃描探針顯微術的原理及應用. 科儀新知, 2005 (144):7-17.
    2.王敬雅, 柯富祥. 前瞻性奈米探針陣列之製作與應用. 國立交通大學, 奈米科技研究所, 2006.
    3.藍承治. 超音波洗淨之應用. 三聯技術, 2004 (53): 16-23.
    4.陳宥滕, 兆聲波輔助化學溶液清潔晶圓表面汙染顆粒研究. 國立中央大學, 機械工程研究所,2016.
    5.E. Herbert, S. Balibar, and F. Caupin, Cavitation pressure in water. Physical Review E, 2006. 74(4): p. 041603.
    6.Azhdast M H, Haleh H, Pouladzadeh P, et al. Theoretical and experimental analysis of beating and cavitation phenomenon on erosion in ultrasonic cleaning process//Advanced intelligent mechatronics, 2009. aim 2009. ieee/asme international conference on. IEEE, 2009: 624-629.
    7.M. Olim, A theoretical evaluation of megasonic cleaning for submicron particles.Journal of The Electrochemical Society, 1997. 144(10): p. 3657-3659.
    8.B.-K. Kang, M.-S. Kim, and J.-G. Park, Effect of dissolved gases in water on acoustic cavitation and bubble growth rate in 0.83 MHz megasonic of interest to wafer cleaning. Ultrasonics Sonochemistry, 2014. 21(4): p. 1496-1503.
    9.M. Kazemi, H. Treichel, and R. Ligutom. Substrate cleaning using ultrasonics/megasonics. in 2011 IEEE/SEMI Advanced Semiconductor Manufacturing Conference. 2011.
    10.Edmonds, P. D., ―Methods of Experimental Physics,‖ Volume 19, Ultrasonics, Academic Press, 1981.
    11.Kim, W., Kim,T. H., Choi, J. and Kim, H. Y. ―Mechanism of particle removal by megasonic waves,‖ Appl. Phys. Lett., vol. 94, 081908, 2009.
    12.H. Lin, A.A. Busnaina, and N. Moumen, Surface Cleaning Mechanisms and Future Cleaning Requirements. IEEE/SEMI Advanced Semiconductor Manufacturing Conference, 2000.
    13.C. Franklin. Megasonic agitation allows removal of chemically amplified photoresists. 2009. SPIE.
    14.K. Bakhtari, et al., Experimental and numerical investigation of nanoparticle removal using acoustic streaming and the effect of time. Journal of the electrochemical society, 2006. 153(9): p. G846-G850.
    15.W. L. Nyborg,Acoustic Streaming, Physical Acoustics, Vol II—Part B, W. P. Mason, Editor, Academic Press, New York1965.
    16.A.A. Busnaina, I.I. Kashkoush, and G.W. Gale, An experimental study of megasonic cleaning of silicon wafers. Journal of the Electrochemical Society, 1995. 142(8): p. 2812-2817.
    17.Kohli R, Mittal K L. Developments in Surface Contamination and Cleaning-Vol 3: Methods for Removal of Particle Contaminants. William Andrew, 2011.
    18.Karimi P, Kim T, Aceros J, et al. The removal of nanoparticles from sub-micron trenches using megasonics. Microelectronic Engineering, 2010, 87(9): 1665-1668.
    19.Q. Qi and J. Brereton, Mechanisms of Removal of Micron-Sized Particles by High-Frequency Ultrasonic Waves. IEEE Transactions on Ultrasonics, Ferroelectrics,and Frequency Control, 1995. 42.
    20.Itano M, Kern F W, Miyashita M, et al. Particle removal from silicon wafer surface in wet cleaning process. IEEE Transactions on Semiconductor Manufacturing, 1993, 6(3): 258-267.
    21.Itano M, Kern F W, Rosenberg R W, et al. Particle deposition and removal in wet cleaning processes for ULSI manufacturing. IEEE transactions on semiconductor manufacturing, 1992, 5(2): 114-120.
    22.H. Mishima, T. Yasui, T. Mizuniwa, M. Yabe and T. Ohmi. “Particle free wafer cleaning and drying technology,” IEEE Trans. Semicond. Manufact., vol. 3, pp. 98-108, Aug. 1989.
    23.W. Kern, Handbook of semiconductor wafer cleaning technology. New Jersey Noyes Publication, 1993 111-196.
    24.Park, Tae-Gyu, et al. "The Fabrication of Megasonic Agitated Module (MAM) for the Developed Characteristics of Wet Etching." Microprocesses and Nanotechnology, 2007 Digest of papers. IEEE, 2007.
    25.W. Kern and D. Puotinen, RCA Rev., 31, 187 (1970).
    26.A Mayer and S. Shwartzman, J. Electron. Mater., 8, 885 (1979).
    27.Kern W. The evolution of silicon wafer cleaning technology. Journal of the Electrochemical Society, 1990, 137(6): 1887-1892.
    28.國家奈米元件實驗室.化學清洗蝕刻區標準操作程序. Available from:
    http://www.lcis.com.tw/paper_store/paper_store/semichem-20147134181602.pdf
    29.弘塑科技股份有限公司. RCA Clean 製程. Available from:
    http://www.gptc.com.tw/tw/product/product_detail-16

    QR CODE
    :::