| 研究生: |
姜俊甫 Jyun-Fu Jiang |
|---|---|
| 論文名稱: |
在室內環境中使用ALC-PSO演算法與危險度指標改良RRT路徑規劃 Using ALC-PSO Algorithm to Improve RRT Path Planning in Indoor Environments with Danger Degree |
| 指導教授: |
鍾鴻源
Hung-Yuan Chung |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 108 |
| 中文關鍵詞: | 老齡化領導者與挑戰者粒子群演算法 、危險度指標 、快速搜尋隨機樹 、路徑規劃 、移動機器人 |
| 外文關鍵詞: | ALC-PSO, Danger Degree, Rapidly-exploring Random Tree, Path Planning, Mobile Robots |
| 相關次數: | 點閱:17 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在移動式機器人中,要如何在有障礙物的環境中,規劃出一條合適的無障礙物的路徑,讓移動機器人能從起始點移動到達目標點且確保路徑是最短的,是一個很重要議題。
本文提出一種最佳路徑規劃方法於移動機器人,利用改良式粒子群演算法也就是老齡化領導者與挑戰者粒子群演算法(ALC-PSO)來模擬快速搜尋隨機樹(RRT),與過去傳統粒子群演算法用於路徑規劃方法有所不同,在本文是藉由樹枝生長的方式來增加延伸點,在我們比較之後,選擇最好的延伸點加到粒子之中,而這是基於使用ALC-PSO演算法的基礎下產生的創新路徑規劃演算法。
這個方法克服了粒子群演算法容易陷入區域最佳點應用於機器人路徑規劃方面上的缺點,而且因為基本的RRT演算法在每次規劃路徑上是不穩定的,所以本文利用模擬RRT演算法的方式來改良ALC-PSO演算法應用在路徑規劃上,且加入了危險度地圖的概念來避開障礙物,經過模擬結果,我們可以證明這個改良創新演算法可以使結果穩定在室內環境中而且比RRT演算法更好,同時也確保規劃路徑會是最短的。
Path planning is an important issue in mobile robotics. In an environment with obstacles, path planning is to find a suitable collision-free path for a mobile robot to move from a start location to a target location along the shortest path.
This paper proposes an optimal path planning algorithm for mobile robots based on Particle Swam Optimization with an Aging Leader and Challengers (ALC-PSO) to imitate Rapidly-exploring Random Tree (RRT), traditional Particle Swam Optimization (PSO) for path planning is different, In this paper, we propose a branches-grow method based on the ALC-PSO algorithm, and add extend point to particles after we compare.
This method overcomes the drawback for particle swam optimization is easy to fall into local optimization in robotic path planning. Because the basic Rapidly-exploring Random Tree (RRT) path planning is unstable for every time, so this paper improved algorithm of ALC-PSO to imitate RRT in path planning, and add Danger Degree Map to avoid obstacles. From the results of simulations, we show that this algorithm can improve the stability of RRT path planning in static environment, and ensures that the path is almost optimal.
[1] S. J. Russell, P. Norvig, Artificial Intelligence: A Modern Approach. Upper Saddle River, N.J.: Prentice Hall. pp. 97–104, 2003.
[2] Q. Wu and B. Zeng, “Real-time globally optimized path planning in a dynamic environment,” IEEE International Conference on Intelligent Computation Technology and Automation, Vol.3, No.261-264, 2009.
[3] X. Ye, Y. L. and H. Hon, “Design of intelligent mobile vehicle system and its global optimal path planning,” IEEE International Conference on Industrial Technology, No.1-5, 2008.
[4] A. T. Klesh, P. T. Kabamba and A.R. Girard, “Optimal Path planning for uncertain exploration,” American Control Conference, No.2421-2426, 2009.
[5] S. L. Valle, J. Kuffner. “Rapidly-exploring random trees: Progress and Prospects,” Proceedings of Algorithmic and Computational Robotics: New Directions, pp. 293-308, 2001.
[6] K. Sugihara and J. Smith, “Genetic Algorithms for Adaptive Motion Planning of an Autonomous Mobile Robot,” in Proceedings of IEEE international Symposium on Computational Intelligence in Robotics and Automation, pp. 138-143, 1997.
[7] I. Ashiru, C. Czarnecki, and T. Routen, “Characteristics of a Genetic Based Approach to Path Planning for Mobile Robots,” J. Network and Computer Applications, Vol. 19, pp. 149-169, 1996.
[8] A. Coloni, M. Dorigo, V. Maniezzo, et a1. Distributed optimization by ant colonies. Proceedimgs of the 1st European Confercnce on Artificial Life, pp. 134-142, 1991.
[9] J. Kennedy and R. Eberhart, "Particle Swarm Optimization," Proceedings of IEEE International Conference on Neural Networks, pp. 1942-1948, 1995.
[10] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numerische Mathematik 1, pp. 269–271, 1959.
[11] P. E. Hart, N. J. Nilsson, B. Raphael, "A Formal Basis for the Heuristic Determination of Minimum Cost Paths," IEEE Transactions on Systems Science and Cybernetics SSC4 4 (2), pp. 100–107, 1968.
[12] P. E. Hart, N. J. Nilsson, B. Raphael, “Correction to A Formal Basis for the Heuristic Determination of Minimum Cost Paths,” SIGART Newsletter 37, pp. 28–29, 1972.
[13] R. Dechter, P. Judea, “Generalized best-first search strategies and the optimality of A*,” Journal of the ACM 32 (3), pp. 505–536, 1985.
[14] http://theory.stanford.edu/~amitp/GameProgramming.
[15] Heppner F, Grenander U. “A Stochastic Nonlinear Model for Coordinated Bird Filcks” Krasner S, ed. The Ubiquity of Chaos Washington, USA: American Association for the Advancement of Science, pp. 233-238, 1990.
[16] D. Fox, W. Burgard, and S. Thrun, “Markov localization for mobile robots in dynamic environments,” Journal of Artificial Intelligence Research, vol. 11, pp. 391-427, 1999.
[17] F. Dellaert, D. Fox, W. Burgard and S. Thrun, “Monte Carlo localization for mobile robots,” IEEE International Conference on Robotics and Automation, vol. 2, pp. 1322-1328, May 1999.
[18] S. Thrun, D. Fox, W. Burgard and F. Dallaert, “Robust Monte Carlo Localization for Mobile Robots,” Artificial Intelligence, vol. 128, pp. 99-141, May 2001.
[19] J. C. Latombe, Robot Motion Planning. Norwood, MA, Kluwer Academic Publishers, 1991.
[20] J. J. A. “The essential visibility graph: an approach to global motion planning for autonomous mobile robots,” IEEE International Conference on Robotics and Automation, Nagoya, 1995.
[21] R. A. Brooks. “Solving the Find-path problem by good representation of free space,” IEEE Trans on Sys Man and Cybern, pp. 190-197, 1983.
[22] R. Chatila. “Path Planning and Environment Learning in a Mobile Robot System,” Proceedings of the European Conference on A I. 1982.
[23] E. Hernandez, M. Carreras, J. Anitich, P. Ridao, and A. Ortiz, “A topologically guided path planner for an AUV using homotopy classes,” in Proc.IEEE Int. Conf. Robot. Autom, Piscataway, NJ, USA, pp. 2337–2343, 2011.
[24] M. B. Metea. “Planning and intelligence autonomous land vehicles using hierarchical terrain representation,” Proceedings of IEEE International Conference on Robotics and Automation, pp. 1947-1952, 1987.
[25] O. Takahashi, R. J. Schilling. “Motion Planning in a plane using gene-realized voronoi diagrams,” IEEE Trans Robotics and Automation, pp. 143-150, 1989.
[26] W. Adiprawita, A.S. Ahmad, J. Sembiring and B.R. Trilaksono, “New resampling algorithm for particle filter localization for mobile robot with 3 ultrasonic sonar sensor,” International Conference on Electrical Engineering and Informatics, pp. 1-6, July 2011.
[27] W. Hong, C. Zhou and Y. Tian, “Robust Monte Carlo Localization for humanoid soccer robot”, IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 934-939, July 2009.
[28] Khatib, “Real-time obstacle for manipulators and mobile robot,” International Journal of Robotic Research, pp. 90-98, 1986.
[29] M. A. Goodrich, Potential Fields Tutorial, 2002. Available at: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.115.3259&rep=rep1&type=pdf.
[30] Nelson H C, Yung Cang Ye. “An Intelligent Mobile Vehicle Navigator Based on Fuzzy Logic and Reinforcement Learning,” IEEE Trans on Sys Man and Cybern. Part B: Cyberneics, pp, 314-320, 1999.
[31] R. Fierro, F. L. Lewis. “Control of nonholonomic mobile robot using neural networks,” IEEE Transactions on Neural Networks, pp. 589-600, 1998.
[32] W. Li, G. Y. Wang. “Application of improved PSO in mobile robotic path planning,” IEEE Intelligent Computing and Integrated Systems, pp. 45-48, 2010.
[33] S. M. Lavalle, J. J. Kuffner. Randomized kinodynamic planning. Detroit, Michigan, pp. 473-479, USA,1999.
[34] 嚴蔚敏,吳偉民,數據結構.北京:清華大學出版社,2008。
[35] Q. Wang, W. Wang, Y. Li. “A multi-RRT based hierarchical path planning method,” International Conference of IEEE Communication Technology, pp. 971-975, 2012.
[36] http://blog.xuite.net/sinner66/blog/12066291.
[37] Z. You, W. Chen, G. He, X. Nan. “Adaptive Weight Particle Swarm Optimization Algorithm with Constriction Factor,” International Conference of Information Science and Management Engineering, pp. 245-248, 2010.
[38] F. Ye and C. Y. Chen, “Alternative KPSO-Clustering Algorithm,” Tamkang Journal of Science and Engineering, Vol. 8, No. 2, pp. 165-174, 2005.
[39] A. Ratnaweera, S. Halgamuge, and H. Watson, “Self-organizing hierarchical particle swarm optimizer with time varying accelerating coefficients,” IEEE Trans. Evol. Comput., vol. 8, pp. 240–255, Jun. 2004.
[40] S. H. Ling, H. C. Herbert, K. Y. Chan, H. K. Lam, C. W. Yeung and F. H. Leung, “Hybrid Particle Swarm Optimization With Wavelet Mutation and Its Industrial Applications,” IEEE Transactions on Systems, Man, and Cybernetics, Part B 38(3):743-763 (2008).
[41] S. H. Chung, Y. Li, and Y. H. Shi, “Particle swarm optimization with an aging leader and challengers,” IEEE Trans. Evol. Comput., vol. 17, no. 2, pp. 241–258, April. 2013.
[42] T. C. Goldsmith, “The Evolution of Aging. Crownsville,” MD: Azinet Press, 2006.
[43] C. Purcaru, R. E. Precup, D. Iercan, L. O. Fedorovici, R. C David, “Hybrid PSO-GSA Robot Path Planning Algorithm in Static Environment with Danger Zones,” IEEE Transactions on Systems, Control and Computing, pp. 434–439, 2013.
[44] N. ZakeriNejad, A. H. Bakhtiary, M. R. Jahed Motlagh, “Use of Particle Swarm Optimization in path planning for rough terrain,” Proceedings of 19th International Workshop on Robotics in Alpe-Adria-Danube Region, pp. 205-209, 2010.
[45] Y. Xue, G. Tian and B. Huang, “Optimal Robot Path Besed on Danger Degree Map,” in Proc. IEEE Congr. Evol. Comput., China August 2009.