跳到主要內容

簡易檢索 / 詳目顯示

研究生: 彭昱琨
Yu-Kun Peng
論文名稱: Process and Product Development for Chemical Recycling of Poly(ethylene terephthalate) by Glycolysis
指導教授: 李度
Tu Lee
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 115
中文關鍵詞: 寶特瓶回收雙(2-羥乙基)對苯二甲酸酯製程發展
外文關鍵詞: poly(ethylene terephthalate) recycling, bis(2-hydroxyethyl) terephthalate,, process development
相關次數: 點閱:7下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 寶特瓶 (poly(ethylene terephthalate)的廣泛使用及其不可生物降解的特性,使得寶特瓶的回收已經成當代重要的議題。根據文獻,寶特瓶被乙二醇解 (Glycolysis of PET)後,可得到單體雙(2-羥乙基)對苯二甲酸酯 (Bis(2-hydroxyethyl) terephthalate)。由於乙二醇醇解需依賴催化劑,所以先前的文獻都較注重在催化劑的選擇和反應參數優化,來達
    到單體之高產率,但由於完整的乙二醇解製程也同時需要用到過濾、結晶、烘乾等單元操作,這些單元操作在製程上對產品的影響也值得被探討。因此,本研究主要為探討乙二醇解反應、過濾、結晶和烘乾,每一個步驟對於整個乙二醇醇解製程上的影響。首先,將 10 g 寶特瓶碎片、乙二醇 (30 及 60 mL)及碳酸鈉 (0.0276、0.0555 及 0.111 g) (催化劑) 加入至附有100mL聚醚醚酮杯(PEEK cup)的高壓釜反應器中,攪拌速率為550rpm,在乙二醇醇解反應中探討不同反應溫度 (165 °、185 °或 195°C)、反應時間 (1、2 或 3h)、不同重量催化劑 (0.0276、0.0555 及 0.111 g) 以及不同體積的乙二醇 (30 及 60 mL)所造成的影響,反應結束後,將高壓釜自然降溫至室溫,加入熱水並保持溫度在 65 °C 一個
    小時,並過濾掉殘留的固體或是不純物並乾燥,其中探討不同體積熱水(60、120 及 240 mL)所造成的影響,之後將濾液從 65 °C 冷卻降溫至 25 °C,析出白色的雙(2-羥乙基)對苯二甲酸酯結晶,在結晶過程中,探討不同攪拌速率(0 及 600 rpm)、結晶時間(4、8及 16h)、降溫速率(5 °C/h 或 80 °C/h)以及溶液起始濃度(110.24、73.49 及 44.10 mg/mL)
    所造成的影響。因為產品具有多晶型,在結晶過程中也對控制多晶型進行討論。最後將雙(2-羥乙基)對苯二甲酸酯結晶過濾並且在 40°C 的烘箱烤乾。並探討多晶型對過濾及烘乾影響。雙(2-羥乙基)對苯二甲酸酯結晶進行從篩網、光學顯微鏡(OM)、傅立葉轉換紅外線光譜儀(FT-IR)、粉末 X 射線繞射儀(PXRD)、差示掃描量熱儀(DSC)、核磁共振儀(NMR)和液相層析儀(HPLC)的檢測結果分別確認雙(2-羥乙基)對苯二甲酸酯的物理化學特性與結構。


    Recycling poly(ethylene terephthalate) (PET) bottles has been discussed widely since its omnipresence and non-biodegradable characteristics. It has been reported that PET can be chemically recycled by glycolysis. The bis(2-hydroxyethyl) terephthalate monomer was the desired product of glycolysis of PET. Previous studies mainly focused on reaction parameters such as catalyst type, amount of catalyst, reaction temperature, reaction time, stirring rate and volume of ethylene glycol (EG) to achieved the high yield of product.However, there were also other processing steps after glycolysis, BHET dimer filtration, crystallization, BHET monomer filtration and drying. The development of those steps is essential because each step can affect the product quality and the process efficiency. Therefore, the aim of my research is to explore the influence of each step from glycolysis to BHET dimer filtration to crystallization to BHET monomer filtration and finally to drying on the whole glycolysis process. Firstly, 10 g of PET flakes, EG (30 and 60 mL) and Na2CO3(0.0276, 0.0555 and 0.111 g) as catalyst were added into an autoclave containing a 100 mL of PEEK cup size and heated a given temperature with a stirring rate of 550 rpm. Then, the autoclave was cooled to room temperature overnight by turning off the autoclave. In glycolysis, the effects of the reaction temperature (165 °, 185 ° and 195 °C), reaction time (1, 2 and 3h), amount of catalyst (0.0276, 0.0555 and 0.111 g) and volume of EG (30 and 60 mL) on the yield of BHET monomer would be studied. After glycolysis, hot water was added and the product medium was kept at 65 °C for 1h and then filtered to separate BHET
    monomer from dimer. In filtration, the effect of the different amount of hot water added (60, 120 and 240 mL) in filtration would be investigated. The filtrate was cooled form 65 ° to 25 °C, and white BHET monomer were crystallized. In crystallization, the effect of different stirring rates of 0 and 600 rpm, crystallization time of 4, 8 and 16h, cooling rate of 80 °C/h and 5 °C/h and initial of concentration of 110.24, 73.49 and 44.10 mg/mL of filtrate on yield, purity, polymorphism and crystal size distribution of BHET monomer. Finally, BHET monomer were filtered and oven dried at 40 °C. The characterizations for all BHET monomer by sieving, optical microscope (OM), Fourier transform infrared spectroscopy(FT-IR), powder X-ray diffractometer (PXRD), differential scanning calorimeter (DSC), nuclear magnetic resonance (NMR) and high performance liquid chromatography (HPLC) to ascertain their physicochemical and structural properties.

    摘要.............................................................................................................................................i Abstract......................................................................................................................................iii Acknowledgement......................................................................................................................v Table of Contents......................................................................................................................vii List of Figures.............................................................................................................................x List of Tables ...........................................................................................................................xiii List of Schemes ........................................................................................................................xv Chapter 1 Introduction ........................................................................................................1 1.1. Poly(ethylene terephthalate) (PET) ............................................................................1 1.2. Chemical Recycling of PET .......................................................................................3 1.3. Glycolysis of PET.....................................................................................................10 1.4. Polymorphism of BHET Monomer..........................................................................14 1.5. Concept of Work.......................................................................................................16 Chapter 2 Experimental Section........................................................................................18 2.1. Materials...................................................................................................................18 2.2. Experimental Methods..............................................................................................20 2.2.1. Glycolysis of PET.........................................................................................20 2.2.2. Separation .....................................................................................................21 viii 2.2.3. Crystallization of BHET Monomer by Cooling ...........................................21 2.2.4. Filtration and Drying ....................................................................................22 2.2.5. Initial solvent selection of BHET Monomer ................................................22 2.2.6. Small Scale Recrystallization of BHET Monomer.......................................23 2.2.7. Filterability and Drying rate of α- and δ- form BHET Monomer ................23 2.2.8. Carr’s Index ..................................................................................................24 2.2.9. Sieving Analysis...........................................................................................24 2.2.10. Solubility Measurements of BHET Monomer..............................................25 2.2.11. Calibration Curve of mechanical mixture of synthesized α- and δ- form BHET monomer .......................................................................................................26 2.2.12. Glycolysis of BHET dimer...........................................................................26 2.3. Analytical Instrument ...............................................................................................28 2.3.1. Optical Microscopy (OM)............................................................................28 2.3.2. Powder X-ray Diffraction (PXRD)...............................................................28 2.3.3. Fourier Transform Infrared (FT-IR) Spectroscopy.......................................28 2.3.4. Differential Scanning Calorimetry (DSC)....................................................29 2.3.5. Nuclear Magnetic Resonance (NMR) ..........................................................30 2.3.6. High Performance Liquid Chromatographic Analyzer (HPLC)...................30 Chapter 3 Results and Discussion .....................................................................................31 ix 3.1. Glycolysis of PET.....................................................................................................31 3.2. Initial Solvent Screening ..........................................................................................40 3.3. Solubility Curve of BHET Monomer by HPLC method..........................................42 3.4. Crystallization of BHET Monomer..........................................................................45 3.5. Separation of BHET Monomer from Dimer.............................................................55 3.6. Polymorph BHET Monomer from glycolysis..........................................................58 3.6.1. Polymorph BHET Monomer from Glycolysis .............................................58 3.6.2. Polymorph screening by Recrystallization BHET Monomer in Mixture of Water and EG............................................................................................................64 3.7. Characteristics of α and δ - Form BHET Monomers................................................68 3.8. Glycolysis of BHET dimer.......................................................................................72 Chapter 4 Conclusion and Future Works ..........................................................................73 Appendices ...............................................................................................................................75 References ................................................................................................................................81

    1 Hopewell, J.; Dvorak, R.; Kosior, E. Plastics Recycling: Challenges and
    Opportunities. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 2009, 364 (1526),
    2115-2126.
    2 Paszun, D.; Spychaj, T. Chemical Recycling of Poly (Ethylene Terephthalate). Ind.
    Eng. Chem. Res. 1997, 36 (4), 1373-1383
    3 Global Polyethylene Terephthalate (PET) Resin Market to Boost in Coming Years –
    Projected to Reach Worth 114.7 Million Tons in 2028 | BlueWeave Consulting
    https://www.globenewswire.com, (accessed 2023/05/04)
    4 Nisticò, R. Polyethylene Terephthalate (PET) in The Packaging Industry. Polym.
    Test. 2020, 90, 106707.
    5 US PET Bottle Recycling Rate Jumps 1.5% After Years of Decline
    https://www.icis.com, (accessed 2023/05/04)
    6 Report: PET Recycling Improving in EU
    https://resource-recycling.com, (accessed 2023/05/04)
    7 Expert’s talk: The Big Decryption of Waste Bottles Being Reproduced Into
    Eco-Friendly Clothing
    https://r-paper.epa.gov.tw, (accessed 2023/04/05)
    8 Recycling Polyethylene Terephthalate https://www.liveabout.com/, (accessed 2023/04/05)
    9 Elisha, O. D. Moving Beyond Take-Make-Dispose to Take-Make-Use for
    Sustainable Economy. Int. J. Sci. Res. Educ. 2020, 13 (3), 497-516.
    10 Al-Salem, S.; Lettieri, P.; Baeyens, J. Recycling and Recovery Routes of Plastic
    Solid Waste (PSW): A Review. Waste Manage. 2009, 29 (10), 2625-2643.
    11 Rahimi, A.; García, J. M. Chemical Recycling of Waste Plastics for New Materials
    Production. Nat. Rev. Chem. 2017, 1 (6), 0046.
    12 Primary, Secondary and Tertiary Recycling Explained
    https://www.recyclingconsortium.org.uk/, (accessed 2023/4/20)
    13 Ignatyev, I. A.; Thielemans, W.; Vander Beke, B. Recycling of Polymers: A
    Review. ChemSusChem. 2014, 7 (6), 1579-1593.
    14 Choi, J. S.; Youn, H. K.; Kwak, B. H.; Wang, Q.; Yang, K. S.; Chung, J. S.
    Preparation and Characterization of TiO2-Masked Fe3O4 Nano Particles for
    Enhancing Catalytic Combustion of 1, 2-Dichlorobenzene and Incineration of
    Polymer Wastes. Appl. Catal. B. 2009, 91 (1-2), 210-216.
    15 Ragaert, K.; Delva, L.; Van Geem, K. Mechanical and Chemical Recycling of
    Solid Plastic Waste. Waste Manage. 2017, 69, 24-58.
    16 Schyns, Z. O.; Shaver, M. P. Mechanical Recycling of Packaging Plastics: A
    review. Macromol. Rapid. Commun. 2021, 42 (3), 2000415
    17 Awaja, F.; Pavel, D. Recycling of PET. Eur. Polym. J. 2005, 41 (7), 1453-1477.
    18 Wu, H.-S. Strategic Possibility Routes of Recycled PET. Polymers. 2021, 13 (9),
    1475.
    19 Islam, M. S.; Islam, Z.; Hasan, R.; Islam Molla Jamal, A. S. Acidic Hydrolysis of
    Recycled Polyethylene Terephthalate Plastic for The Production of Its Monomer
    Terephthalic Acid. Prog. Rubber. Plast. Recycl. Tech. 2023, 39 (1), 12-25.
    20 Lee, H. L.; Chiu, C. W.; Lee, T. Engineering Terephthalic Acid Product from
    Recycling of PET Bottles Waste for Downstream Operations. Chem. Eng. J. Adv.
    2021, 5, 100079.
    21 Grigore, M. E. Methods of Recycling, Properties and Applications of Recycled
    Thermoplastic Polymers. Recycling. 2017, 2 (4), 24.
    22 Paszun, D.; Spychaj, T. Chemical Recycling of Poly (Ethylene Terephthalate). Ind.
    Eng. Chem. Res. 1997, 36 (4), 1373-1383.
    23 Yang, Y.; Lu, Y.; Xiang, H.; Xu, Y.; Li, Y. Study on Methanolytic
    Depolymerization of PET with Supercritical Methanol for Chemical Recycling.
    Polym. Degrad. Stab. 2002, 75 (1), 185-191.
    24 Pudack, C.; Stepanski, M.; Fässler, P. PET Recycling–Contributions of
    Crystallization to Sustainability. Chem. Ing. Tech. 2020, 92 (4), 452-458.
    25 Gupta, P.; Bhandari, S. Chemical Depolymerization of PET Bottles via
    Ammonolysis and Aminolysis. In Recycling of Polyethylene Terephthalate Bottles,
    Elsevier, 2019; pp 109-134.
    26 Blackmon, K. P.; Fox, D. W.; Shafer, S. J. Process for Converting PET Scrap to
    Diamide Monomers. Eur. Patent 365,842, 1988
    27 Beneš, H.; Rösner, J.; Holler, P.; Synková, H.; Kotek, J.; Horák, Z. Glycolysis of
    Flexible Polyurethane Foam in Recycling of Car Seats. Polym. Adv. Technol. 2007,
    18 (2), 149-156.
    28 Imran, M.; Kim, B.-K.; Han, M.; Cho, B. G. Sub-and Supercritical Glycolysis of
    Polyethylene Terephthalate (PET) Into The Monomer Bis (2-Hydroxyethyl)
    Terephthalate (BHET). Polym. Degrad. Stab. 2010, 95 (9), 1686-1693.
    29 Awaja, F.; Pavel, D. Recycling of PET. Eur. Polym. J. 2005, 41 (7), 1453-1477.
    30 Ghaemy, M.; Mossaddegh, K. Depolymerisation of Poly (Ethylene Terephthalate)
    Fibre Wastes Using Ethylene Glycol. Polym. Degrad. Stab. 2005, 90 (3), 570-576.
    31 Sheel, A.; Pant, D. Chemical Depolymerization of PET Bottles via Glycolysis. In
    Recycling of polyethylene terephthalate bottles, Elsevier, 2019; pp 61-84
    32 Barnard, E.; Arias, J. J. R.; Thielemans, W. Chemolytic Depolymerisation of PET:
    A Review. Green. Chem. 2021, 23 (11), 3765-3789.
    33 Karayannidis, G.; Chatziavgoustis, A.; Achilias, D. Poly (Ethylene Terephthalate)
    Recycling and Recovery of Pure Terephthalic Acid by Alkaline Hydrolysis. Adv.
    Polym. Technol. 2002, 21 (4), 250-259.
    34 Han, M. Depolymerization of PET Bottle via Methanolysis and Hydrolysis. In
    Recycling of Polyethylene Terephthalate Bottles, Elsevier, 2019; pp 85-108
    35 Ju, Z.; Xiao, W.; Lu, X.; Liu, X.; Yao, X.; Zhang, X.; Zhang, S. Theoretical
    Studies on Glycolysis of Poly (Ethylene Terephthalate) in Ionic Liquids. RSC. Adv.
    2018, 8 (15), 8209-8219.
    36 Geng, Y.; Dong, T.; Fang, P.; Zhou, Q.; Lu, X.; Zhang, S. Fast and Effective
    Glycolysis of Poly (Ethylene Terephthalate) Catalyzed by Polyoxometalate. Polym.
    Degrad. and Stabil. 2015, 117, 30-36.
    37 Wang, Q.; Yao, X.; Geng, Y.; Zhou, Q.; Lu, X.; Zhang, S. Deep Eutectic Solvents
    as Highly Active Catalysts for The Fast and Mild Glycolysis of Poly (Ethylene
    Terephthalate) (PET). Green. Chem. 2015, 17 (4), 2473-2479.
    38 Zhao, Y.; Liu, M.; Zhao, R.; Liu, F.; Ge, X.; Yu, S. Heterogeneous CaO (SrO,
    BaO)/MCF as Highly Active and Recyclable Catalysts for The Glycolysis of Poly
    (Ethylene Terephthalate). Res. Chem. Intermed. 2018, 44, 7711-7729.
    39 López-Fonseca, R.; Duque-Ingunza, I.; de Rivas, B.; Flores-Giraldo, L.;
    Gutiérrez-Ortiz, J. I. Kinetics of Catalytic Glycolysis of PET Wastes with Sodium
    Carbonate. Chem. Eng. J. 2011, 168 (1), 312-320.
    40 Yue, Q. F.; Xiao, L. F.; Zhang, M. L.; Bai, X. F. The Glycolysis of Poly (Ethylene
    Terephthalate) Waste: Lewis Acidic Ionic Liquids as High Efficient Catalysts.
    Polymers. 2013, 5 (4), 1258-1271.
    41 Shukla, S.; Palekar, V.; Pingale, N. Zeolite Catalyzed Glycolysis of Poly (Ethylene
    Terephthalate) Bottle Waste. J. Appl. Polym. Sci. 2008, 110 (1), 501-506.
    42 Laldinpuii, Z.; Lalhmangaihzuala, S.; Pachuau, Z.; Vanlaldinpuia, K.
    Depolymerization of Poly (Ethylene Terephthalate) Waste with Biomass-Waste
    Derived Recyclable Heterogeneous Catalyst. Waste Manage. 2021, 126, 1-10.
    43 Xin, J.; Zhang, Q.; Huang, J.; Huang, R.; Jaffery, Q. Z.; Yan, D.; Zhou, Q.; Xu, J.;
    Lu, X. Progress in the Catalytic Glycolysis of Polyethylene Terephthalate. J. Environ.
    Manage. 2021, 296, 113267.
    44 Hu, Y.; Wang, Y.; Zhang, X.; Qian, J.; Xing, X.; Wang, X. Synthesis of Poly
    (Ethylene Terephthalate) Based on Glycolysis of Waste PET Fiber. J. Macromol .Sci.
    A. 2020, 57 (6), 430-438.
    45 Huang, J.; Yan, D.; Dong, H.; Li, F.; Lu, X.; Xin, J. Removal of Trace Amount
    Impurities in Glycolytic Monomer of Polyethylene Terephthalate by Recrystallization.
    J. Environ. Chem. Eng. 2021, 9 (5), 106277.
    46 Zhang, Q.; Huang, R.; Yao, H.; Lu, X.; Yan, D.; Xin, J. Removal of Zn2+ from
    Polyethylene Terephthalate (PET) Glycolytic Monomers by Sulfonic Acid Cation
    Exchange Resin. J. Environ. Chem. Eng. 2021, 9 (4), 105326.
    47 Leal Filho, W.; Ellams, D.; Han, S.; Tyler, D.; Boiten, V. J.; Paço, A.; Moora, H.;Balogun, A.-L. A Review of The Socio-Economic Advantages of Textile Recycling. J.
    Clean. Prod. 2019, 218, 10-20.
    48 Glycolysis of Waste PET Bottles Using Sodium Acetate and Calcium Carbonate as
    Catalyst. Asian Dyer, 2022.
    https://www.researchgate.net/profile/Harshal-Patil-7/publication/361668278_Glycolys
    is_of_waste_PET_bottles_using_sodium_acetate_and_calcium_carbonate_as_catalyst
    /links/62bef6760bf6950edea2121e/Glycolysis-of-waste-PET-bottles-using-sodium-ac
    etate-and-calcium-carbonate-as-catalyst.pdf (accessed 2023/ 05/ 23)
    49 Krisbiantoro, P. A.; Chiao, Y.-W.; Liao, W.; Sun, J.-P.; Tsutsumi, D.; Yamamoto,
    H.; Kamiya, Y.; Wu, K. C.-W. Catalytic Glycolysis of Polyethylene Terephthalate
    (PET) by Solvent-Free Mechanochemically Synthesized MFe2O4 (M= Co, Ni, Cu and
    Zn) Spinel. Chem. Eng. J. 2022, 450, 137926.
    50 Hu, Y.; Wang, Y.; Zhang, X.; Qian, J.; Xing, X.; Wang, X. Synthesis of Poly
    (Ethylene Terephthalate) Based on Glycolysis of Waste PET Fiber. J. Macromol. Sci.
    A. 2020, 57 (6), 430-438.
    51 Pingale, N. D.; Palekar, V. S.; Shukla, S. Glycolysis of Postconsumer Polyethylene
    Terephthalate Waste. J. Appl. Polym. Sci. 2010, 115 (1), 249-254
    52 Alzuhairi, M.; Khalil, B.; Hadi, R. Nano ZnO Catalyst for Chemical Recycling of
    Polyethylene Terephthalate (PET). J. Eng. Technol. 2017, 35 (8), 831-837
    53 Pingale, N. D.; Palekar, V. S.; Shukla, S. Glycolysis of Postconsumer Polyethylene
    Terephthalate Waste. J. Appl. Polym. Sci. 2010, 115 (1), 249-254.
    54 Al-Sabagh, A. M.; Yehia, F. Z.; Eissa, A.-M. M.; Moustafa, M. E.; Eshaq, G.;
    Rabie, A.-R. M.; ElMetwally, A. E. Glycolysis of Poly (Ethylene Terephthalate)
    Catalyzed by the Lewis Base Ionic Liquid [Bmim][OAc]. Ind. Eng. Chem. Res. 2014,
    53 (48), 18443-18451.
    55 Yue, Q.; Wang, C.; Zhang, L.; Ni, Y.; Jin, Y. Glycolysis of Poly (Ethylene
    Terephthalate) (PET) Using Basic Ionic Liquids as Catalysts. Polym. Degrad. Stab.
    2011, 96 (4), 399-403
    56 Lalhmangaihzuala, S.; Laldinpuii, Z.; Lalmuanpuia, C.; Vanlaldinpuia, K.
    Glycolysis of Poly (Ethylene Terephthalate) Using Biomass-Waste Derived
    Recyclable Heterogeneous Catalyst. Polymers 2020, 13 (1), 37.
    57 Kim, Y.; Kim, M.; Hwang, J.; Im, E.; Moon, G. D. Optimizing PET Glycolysis
    with An Oyster Shell-Derived Catalyst Using Response Surface Methodology.
    Polymers. 2022, 14 (4), 656.
    58 Wang, R.; Wang, T.; Yu, G.; Chen, X. A New Class of Catalysts for The
    Glycolysis of PET: Deep Eutectic Solvent@ ZIF-8 Composite. Polym. Degrad. Stab.
    2021, 183, 109463.
    59 Brittain, H. G. Polymorphism and Solvatomorphism 2010. J. Pharm. Sci. 2012,101 (2), 464-484.
    60 Gu, C.-H.; Young Jr, V.; Grant, D. J. Polymorph Screening: Influence of Solvents
    on The Rate of Solvent-Mediated Polymorphic Transformation. J. Pharm. Sci. 2001,
    90 (11), 1878-1890.
    61 Yang, X.; Wang, X.; Ching, C. B. Solubility of Form α and Form γ of Glycine in
    Aqueous Solutions. J. Chem. Eng. Data. 2008, 53 (5), 1133-1137.
    62 Ivanova, B. B.; Arnaudov, M. G. Solid State Linear-Dichroic Infrared Spectral and
    Theoretical Analysis of Methionine-Containing Tripeptides. Spectrochim. Acta. A.
    2006, 65 (1), 56-61.
    63 Yu, L.; Ng, K. Glycine Crystallization During Spray Drying: the pH Effect on Salt
    and Polymorphic Forms. J. Pharm. Sci. 2002, 91 (11), 2367-2375.
    64 Kitamura, M. Controlling Factor of Polymorphism in Crystallization Process. J.
    Cryst. Growth. 2002, 237, 2205-2214.
    65 Kashino, S.; Haisa, M. Topochemical studies. V. The Crystal Structure and
    Molecular Conformation of Bis (2-Hydroxyethyl) Terephthalate. Acta. Crystallogr. B.
    1975, 31 (7), 1819-1822.
    66 Miyake, A. Polymorphism of Bis-β-hydroxyethyl Terephthalate. Bull. Chem. Soc.
    Jpn. 1957, 30 (4), 361-363.
    67 McDonald, W.; Lewis, E.; Bower, D. Structure of The γ Form of Bis(2-Hydroxyethyl) Terephthalate, C12H14O6. Acta. Crystallogr. C. 1983, 39 (3),
    410-412.
    68 Scé, F.; Cano, I.; Martin, C.; Beobide, G.; Castillo, O.; de Pedro, I. Comparing
    Conventional and Microwave-Assisted Heating in PET Degradation Mediated by
    Imidazolium-Based Halometallate Complexes. New J. Chem. 2019, 43 (8),
    3476-3485.
    69 Lee, T.; Kuo, C.; Chen, Y. H. Solubility, Polymorphism, Crystallinity, and Crystal
    Habit of Acetaminophen and Ibuprofen by Initial Solvent Screening. Pharm. Technol.
    2006, 30 (10), 72-92.
    70 Lee, T.; Chen, J. W.; Lee, H. L.; Lin, T. Y.; Tsai, Y. C.; Cheng, S.-L.; Lee, S.-W.;
    Hu, J.-C.; Chen, L.-T. Stabilization and Spheroidization of Ammonium Nitrate:
    Co-Crystallization with Crown Ethers and Spherical Crystallization by Solvent
    Screening. Chem. Eng. J. 2013, 225, 809-817.
    71 Hao, T. Understanding Empirical Powder Flowability Criteria Scaled by Hausner
    Ratio or Carr Index with The Analogous Viscosity Concept. RSC. Adv. 2015, 5 (70),
    57212-57215.
    72 Guo, Z.; Lindqvist, K.; de la Motte, H. An Efficient Recycling Process of
    Glycolysis of PET in The Presence of A Sustainable Nanocatalyst. J. Appl. Polym. Sci.
    2018, 135 (21), 46285.73 Khoonkari, M.; Haghighi, A. H.; Sefidbakht, Y.; Shekoohi, K.; Ghaderian, A.
    Chemical Recycling of PET Wastes with Different Catalysts. Int. J. Polym. Sci. 2015,
    2015,124534.
    74 Viana, M. E.; Riul, A.; Carvalho, G. M.; Rubira, A. F.; Muniz, E. C. Chemical
    Recycling of PET by Catalyzed Glycolysis: Kinetics of the Heterogeneous Reaction.
    Chem. Eng. J. 2011, 173 (1), 210-219.
    75 Chen, C. H.; Chen, C. Y.; Lo, Y. W.; Mao, C. F.; Liao, W. T. Studies of
    Glycolysis of Poly (Ethylene Terephthalate) Recycled from Postconsumer Soft‐Drink
    Bottles. I. Influences of Glycolysis Conditions. J. Appl. Polym. Sci. 2001, 80 (7),
    943-948.
    76 Alfonsi, K.; Colberg, J.; Dunn, P. J.; Fevig, T.; Jennings, S.; Johnson, T. A.; Kleine,
    H. P.; Knight, C.; Nagy, M. A.; Perry, D. A. Green Chemistry Tools to Influence A
    Medicinal Chemistry and Research Chemistry Based Organisation. Green. Chem.
    2008, 10 (1), 31-36.
    77 CBD isolate crystallization FAQ
    https://www.nitechsolutions.co.uk/applications/cbd-crystallization/cbd-isolate-crystall
    ization-faq/ (accessed in 2023/05/30)
    78 Duque‐Ingunza, I.; López‐Fonseca, R.; De Rivas, B.; Gutiérrez‐Ortiz, J. Processoptimization for catalytic glycolysis of post‐consumer PET wastes. J. Chem. Technol.
    Biotechnol. 2014, 89 (1), 97-103.
    79 Yuan, P.; Liu, B.; Sun, H. Optimization of the Crystallization Process of Bis (2‐
    Hydroxyethyl) Terephthalate. Cryst. Res. Technol. 2021, 56 (11), 2100025.
    80 Mullin, J. W. Nucleation In Crystallization 4th edition; Elsevier, 2001; pp 182 - 215
    81 Bohne, D.; Fischer, S.; Obermeier, E. Thermal, Conductivity, Density, Viscosity,
    and Prandtl‐Numbers of Ethylene Glycol‐Water Mixtures. Bunsenges. Phys. Chem.
    1984, 88 (8), 739-742.
    82 Kashino, S.; Haisa, M. Topochemical studies. V. The Crystal Structure and
    Molecular Conformation of Bis (2-Hydroxyethyl) Terephthalate. Acta. Crystallogr. B.
    1975, 31 (7), 1819-1822
    83 Dickinson, S. R.; McGrath, K. Quantitative Determination of Binary and Tertiary
    Calcium Carbonate Mixtures Using Powder X-Ray Diffraction. Analyst 2001, 126 (7),
    1118-1121.
    84 Sundaram, M.; Natarajan, S.; Dikundwar, A. G.; Bhutani, H. Quantification of
    Solid-State Impurity with Powder X-ray Diffraction Using Laboratory Source.
    Powder Diffr. 2020, 35 (4), 226-232.
    85 Moreno-Calvo, E.; Calvet, T.; Cuevas-Diarte, M. A.; Aquilano, D. Relationship
    between The Crystal Structure and Morphology of Carboxylic Acid Polymorphs.
    Predicted and Experimental Morphologies. Crystl. Growth Des. 2010, 10 (10), 4262-4271.
    86 Radu, M.; Schilling, T. Solvent hydrodynamics Speed Up Crystal Nucleation in
    Suspensions of Hard Spheres. EPL. 2014, 105 (2), 26001.
    87 MacLeod, C. S.; Muller, F. L. On The Fracture of Pharmaceutical Needle-Shaped
    Crystals During Pressure Filtration: Case Studies and Mechanistic Understanding.
    Org. Process Res. Dev. 2012, 16 (3), 425-434.
    88 Lee, T.; Yang, C. L.; Lee, H. L. Saving energy upon water removal in drying by
    making the α-polymorph of L-glutamic acid. Sep. Sci. Technol. 2022, 57 (12),
    1948-1965.
    89 Park, G.; Bartolome, L.; Lee, K. G.; Lee, S. J.; Park, T. J. One-step sonochemical
    synthesis of a graphene oxide–manganese oxide nanocomposite for catalytic glycolysis of
    poly (ethylene terephthalate). Nanoscale 2012, 4 (13), 3879-3885

    QR CODE
    :::