| 研究生: |
許書豪 Shu-Hao Hsu |
|---|---|
| 論文名稱: |
非揮發性鍺量子點掩埋於二氧化矽/氮化矽複合穿隧介電層之MOS電容研製與載子傳輸機制之探討 Fabrication and Carrier Transport Mechanism of Nonvolatile Germanium Quantum Dots Imbedded in Oxide-Nitride Composite Tunnel Dielectric MOS-Capacitors |
| 指導教授: |
李佩雯
Pei-Wen Li |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | 非揮發性記憶體 |
| 外文關鍵詞: | nonvolatile memory |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文旨在探討單層和雙層鍺量子點的閘堆疊,高介電係數材料應用,以及由兩個不同能隙的介電層堆疊,所產生的階梯形能障所帶來的優缺點,並藉由分析載子在複合介電層的傳輸機制,來了解電荷在複合穿隧介電層的傳輸機制對非揮發記憶體的效能影響。在分析後可以知道,在元件操作的電場區域,電子在介電層的傳輸機制,單層是氮化矽F-P穿隧與二氧化矽F-N穿隧的串聯,由氮化矽主導;雙層亦是氮化矽F-P穿隧與二氧化矽穿隧的串聯,由二氧化矽主導。
This article investigates the integration of multi-layer Ge QDs, high-K material, composite dielectrics and stair-case energy barrier for nonvolatile memory, and analyzes the advantages and disadvantages of the MOS-capacitors with these terms of charge storage, retention, and endurance. Furthermore, we analyze the carrier transport mechanism in the composite dielectrics.
參考文獻資料
[1] K. K. Likharev , ”Layered tunnel barriers for nonvolatile memory Device,” Applied Physics Letters, vol. 73, p. 2137, 1998.
[2] P. W. Li et al, ”Formation of atomic-scale germanium quantum dots by selective oxidation of SiGe/Si-on-insulator,” Applied Physics Letters, vol. 83, p. 4628, 2003.
[3] S. S. Tseng and P. W. Li, “Enhanced 400–600 nm photoresponsivity of metal–oxide–semiconductor diodes with multi-stack germanium quantum dots,” Nanotechnology, vol. 19, p. 235203, 2008.
[4] D. A. Neamen, Semiconductor Physics and Device, 3rd ed., McGraw-Hill New York, 2003.
[5] Y. Maeda et al, “Visible photoluminescence of Ge microcrystals embedded in SiO2 glassy matrices,” Applied Physics Letters, vol. 59, p. 3168, 1991.
[6] K. V. Shcheglov, et al, “Electroluminescence and photoluminescence of Ge-implanted Si/SiO2/Si Structures,” Applied Physics Letters, vol. 66, p. 745, 1995.
[7] T. Brunhes, et al, “Electroluminescence of Ge/Si self-assembled quantum dots grown by chemical vapor deposition,” Applied Physics Letters, vol. 77, p. 1822, 2000.
[8] T. Kobayashi et al, ”Ge nanocrystals in SiO2 films,” Applied Physics Letters, vol.71, p. 1195, 1997.
[9] P. W. Li et al, ”Formation of atomic-scale germanium quantum dots by selective oxidation of SiGe/Si-on-insulator,” Applied Physics Letters, vol. 83, p. 4628, 2003.
[10] Tsu-Jae King and K. C. Saraswat, ”Deposition and properties of low-pressure chemical-vapor deposited polycrystalline silicon-germanium films,” Journal of Electrochemical Society, vol. 141, p. 2235, 1994.
[11] J. H. Wu and P. W. Li, “Ge nanocrystals metal-oxide-semiconductor transistors with Ge nanocrystals formed by thermal oxidation of poly-Si0.88Ge0.12,” Semiconductor Science and Technology, vol. 22, p. S89, 2001.
[12] S. H. Hsu, W. T. Lai, and P. W. Li, “High performance germanium quantum-dot single-hole transistors with self-aligned electrodes,” in Solid State Device Material Symposium 2007, p 1132.
[13] S. M. Sze, Physics of Semiconductor Devices, 2nd ed., Murray Hill, New Jersey, 1981.
[14] J. H. Wu and P. W. Li, “Ge nanocrystals metal-oxide-semiconductor transistors with Ge nanocrystals formed by thermal oxidation of poly-Si0.88Ge0.12,” Semiconductor Science and Technology, vol. 22, p. S89, 2001.