| 研究生: |
陳信呈 Sin-Cheng Chen |
|---|---|
| 論文名稱: |
以頻率為基礎挖掘特例工作流程之研究 A Frequent-based Algorithm for Workflow Outlier Mining |
| 指導教授: |
許秉瑜
Ping-Yu Hsu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 企業管理學系 Department of Business Administration |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 50 |
| 中文關鍵詞: | 工作流程 、資料挖礦 、異常偵測 |
| 外文關鍵詞: | Workflow mining, Data mining, Outlier detection |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
工作流程的概念在許多資訊系統中往往是很重要的議題,工作流程設計不佳將導致企業營運績效不彰,企業策略也無法完全發揮。因此,本研究提出挖掘特例工作流程的演算法,根據過去工作流程的執行頻率,找出特例工作流程作為調整工作流程的參考依據。在管理意涵上能輔助企業主管或顧問:
1.在企業進行內稽內控(Auditing)時,能有效控制特例情形。
2.透過整併相關流程,簡化企業作業流程。例如建置BPM系統時有助 於在流程分析與建構部分的執行,讓BPM系統能將企業流程與資訊系統進行更完美的整合;或是在ERP導入時幫助調整系統參數,關掉不需要執行的流程步驟,使系統調整到最佳化。
本研究之演算法以工作流程的發生頻率,搭配距離為基礎的異常偵測概念,使用經驗法則以及窮舉法方式,挖掘出三種類型的特例工作流程。包括各流程中少發生的特例工作流程、整體流程裡少發生的特例工作流程、以及整體流程中從未執行過的特例工作流程。並透過真實資料,驗證本方法之可行性。
The concept of workflow is very critical in enterprise information system. Irrational workflow will not only leads to an awful operation of enterprise, but also limits the executive of business strategy.
This research provides an algorithm which base on the workflow’s executive frequency, to find out company’s workflow outlier for adjusting the whole workflow.
It will help the managers and consultants to
(1) Control the exception while enterprise auditing.
(2) Simplify the business process by integrated related process.
The algorithm uses the frequency of workflow, the concept of distance-based outlier detection, empirical rule and method of exhaustion to mine three types of workflow outlier, including less happened workflow outlier of each process (abnormal workflow of each process), less happened workflow outlier of all processes (abnormal workflow of all processes) and never happened workflow outlier (redundant workflow).
This research also uses real data to evaluate the feasibility.
[Hol,1995] Hollingsworth D., Workflow Management Coalition: the Workflow Reference Model, Workflow Management Coalition, TC00-1003 (1995)
[SF,2002] Smith, H. & Fingar, P. (2002), Business Process Management: The Third Wave, Tampa:Meghan-Kiffer Press.
[Kal,2000] Kale, V., Implementing SAP R/3: The Guide for Business and Technology Managers, Sams Publishing, Jan. 2000.
[AW,2003]W.M.P. van der Aalst, A.J.M.M. Weijter ,Process Mining: A Research Agenda (2003)
[CW,1998] J.E. Cook, A.L. Wolf, Event-based detection of concurrency, in: Proceedings of the Sixth International Symposium on the Foundations of Software Engineering (FSE-6), 1998, pp. 35–45
[CW,1999] J.E. Cook, A.L. Wolf, Software process validation: Quantitatively measuring the correspondence of a process to a model, ACM Transactions on Software Engineering and Methodology 8 (2) (1999) 147–176
[AGL,1998] R. Agrawal, D. Gunopulos, F. Leymann, Mining Process Models from Workflow Logs, in: Sixth International Conference on Extending Database Technology, 1998, pp. 469–483. W.M.P. van der Aalst et al. / Data & Knowledge Engineering 47 (2003) 237–267 263
[Kie,2002] B. Kiepuszewski, Expressiveness and Suitability of Languages for Control Flow Modelling in Workflows (submitted), Ph.D. thesis, Queensland University of Technology, Brisbane, Australia, 2002
[Sch,2002] G. Schimm, Process Mining. http://www.processmining.de/
[HK,1998] J. Herbst, D. Karagiannis, Integrating machine learning and workflow management to support acquisition and adaptation of workflow models, in: Proceedings of the Ninth International Workshop on Database and Expert Systems Applications, IEEE, 1998, pp. 745–752
[Her,2000] J. Herbst, A machine learning approach to workflow management, in: Proceedings 11th European Conference on Machine Learning, Lecture Notes in Computer Science, vol. 1810, Springer-Verlag, Berlin, 2000, pp. 183–194
[Herb,2000] J. Herbst, Dealing with concurrency in workflow induction, in: U. Baake, R. Zobel, M. Al-Akaidi (Eds.), European Concurrent Engineering Conference, SCS Europe, 2000
[Her,2001] J. Herbst, Ein induktiver Ansatz zur Akquisition und Adaption von Workflow-Modellen, Ph.D. thesis, Universit?at Ulm, November 2001
[HK,1999]J. Herbst, D. Karagiannis, An inductive approach to the acquisition and adaptation of workflow models, in: M. Ibrahim, B. Drabble (Eds.), Proceedings of the IJCAI_99 Workshop on Intelligent Workflow and Process Management: The New Frontier for AI in Business, Stockholm, Sweden, August 1999, pp. 52–57
[WA,2001] A.J.M.M. Weijters, W.M.P. van der Aalst, Rediscovering workflow models from event-based data, in: V. Hoste, G. de Pauw (Eds.), Proceedings of the 11th Dutch-Belgian Conference on Machine Learning (Benelearn 2001), 2001, pp. 93–100
[ WAa,2001] A.J.M.M. Weijters, W.M.P. van der Aalst, Process mining: discovering workflow models from event-based data, in: B. Kr?ose, M. de Rijke, G. Schreiber, M. van Someren (Eds.), Proceedings of the 13th Belgium–Netherlands Conference on Artificial Intelligence (BNAIC 2001), 2001, pp. 283–290
[MAWBD,2001] L. Maruster, W.M.P. van der Aalst, A.J.M.M. Weijters, A. van den Bosch, W. Daelemans, Automated discovery of workflow models from hospital data, in: B. Kr?ose, M. de Rijke, G. Schreiber, M. van Someren (Eds.), Proceedings of the 13th Belgium-Netherlands Conference on Artificial Intelligence (BNAIC 2001), 2001, pp. 183–190
[AWM,2002] L. Maruster, A.J.M.M. Weijters, W.M.P. van der Aalst, A. van den Bosch, Process mining: discovering direct successors in process logs, in: Proceedings of the 5th International Conference on Discovery Science (Discovery Science 2002), Lecture Notes in Artificial Intelligence, vol. 2534, Springer-Verlag, Berlin, 2002, pages 364–373
[AD,2002] W.M.P. van der Aalst, B.F. van Dongen, Discovering Workflow Performance Models from Timed Logs, in: Y. Han, S. Tai, D. Wikarski (Eds.), International Conference on Engineering and Deployment of Cooperative
Information Systems (EDCIS 2002), Lecture Notes in Computer Science, vol. 2480, Springer-Verlag, Berlin, 2002, pp. 45–63
[GCDS,2001] D. Grigori, F. Casati, U. Dayal, M.C. Shan, Improving business process quality through exception understanding, prediction, and prevention, in: P. Apers, P. Atzeni, S. Ceri, S. Paraboschi, K. Ramamohanarao, R. Snodgrass (Eds.), Proceedings of 27th International Conference on Very Large Data Bases (VLDB_01), Morgan Kaufmann, 2001, pp. 159–168
[SCSD,2002] M. Sayal, F. Casati, M.C. Shan, U. Dayal, Business process cockpit, in: Proceedings of 28th International Conference on Very Large Data Bases (VLDB_02), Morgan Kaufmann, 2002, pp. 880–883
[JGW,2002] J. Eder, G.E. Olivotto, W. Gruber, A Data Warehouse for Workflow Logs, in: Y. Han, S. Tai, D. Wikarski (Eds.), International Conference on Engineering and Deployment of Cooperative Information Systems (EDCIS 2002), Lecture Notes in Computer Science, vol. 2480, Springer-Verlag, Berlin, 2002, pp. 1–15
[Mich,2001] Michael zur Muehlen, Process-driven management information systems––combining data warehouses and workflow technology, in: B. Gavish (Ed.), Proceedings of the International Conference on Electronic Commerce Research (ICECR-4), IEEE Computer Society Press, Los Alamitos, California, 2001, pp. 550–566.
[MM,2000] Michael zur Muehlen, M. Rosemann, Workflow-based process monitoring and controlling––technical and organizational issues, in: R. Sprague (Ed.), Proceedings of the 33rd Hawaii International Conference on System Science (HICSS-33), IEEE Computer Society Press, Los Alamitos, California, 2000, pp. 1–10
[MWM,2006 ] M.H. Jansen-Vullers, W.M.P. van der Aalst, M. Rosemann, Mining configurable enterprise information systems, Data &Knowledge Engineering 56(2006) 195-244
[ZXJS,2004] Mining class outliers: concepts, algorithms and applications in CRM
[Haw,1980] 1980 Hawkins, D. (1980). Identification of outliers. Reading, London: Chapman & Hall
[YTW,2000] 2000 On-line unsupervised outlier detection using finite mixtures with discounting learning algorithms
[YT,2001] Yamanishi, K., & Takeuchi, J. (2001). Discovering outlier filtering rules from unlabeled data-combining a supervised learner with an unsupervised learner Proceedings of the KDD01 pp. 389–394
[NR,1996] Nuts, R., & Rousseeuw, P. (1996). Computing depth contours of bivariate point clouds. Computational Statistics and Data Analysis, 23, 153–168
[AAR,1996] Arning, A., Agrawal, R., & Raghavan, P. (1996). A linear method for deviation detection in large databases Proceedings of the KDD96 pp. 164–169
[KN,1997] Knorr, E., & Ng, R. (1997). A unified notion of outliers: Properties and computation Proceedings of the KDD97 pp. 219–222
[KN,1998] Knorr, E., & Ng, R. (1998). Algorithms for mining distance-based outliers in large datasets Proceedings of the VLDB98 pp. 392–403
[KN,1999] Knorr, E., & Ng, R. (1999). Finding intentional knowledge of distance-based outliers Proceedings of the VLDB99 pp. 211–222
[MHRJ,1999] Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, Jorg Sander. OPTICS-OF: Identifying Local Outliers. In Proc. Of the 3rd European Conference on PKDD, Prague, September 1999.
[RRK,2000] Ramaswamy et al. (2000 Ramaswamy, S., Rastogi, R., & Kyuseok, S. (2000). Efficient algorithms for mining outliers from large data sets Proceedings of the SIGMOD00 pp. 93–104
[AP,2000] Angiulli, F., & Pizzuti, C. (2002). Fast outlier detection in high dimensional spaces Proceedings of the PKDD02 pp. 25–36
[BS,2003] 2003 Bay, S. D., & Schwabacher, M. (2003). Mining distance based outliers in near linear time with randomization and a simple pruning rule Proceedings of the KDD03
[BKNS,2000] Breunig, M. M., Kriegel, H. P., Ng, R. T., & Sander, J. (2000). LOF: identifying density-based local outliers Proceedings of the SIGMOD00pp. 93–104
[TCFC,2002] Tang, T., Chen, Z., Fu, A. W., & Cheung, D. W. (2002). Enhancing effectiveness of outlier detections for low density patterns Proceedings of the PAKDD02 pp. 535–548
[CF,2003] 2003 Chiu, A. L., & Fu, A. W. (2003). Enhancements on local outlier detection Proceedings of the IDEAS03
[HXHD,2004] Zengyou He, Xiaofei Xu, Joshua Zhexue Huang, Shengchun Deng,Mining class outliers: concepts, algorithms and applications in CRM
網站資料:
[Gartner Group] http://www.comwave.com.tw/crm-solution/defi.htm