| 研究生: |
陳彥平 Yan-Ping Chen |
|---|---|
| 論文名稱: |
資訊分享與VMI之供應鏈利潤最大化模型 The Profit Maximization Model for Supply Chain with Information Sharing and Vendor Managed Inventory |
| 指導教授: |
陳振明
Jen-Ming Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業管理研究所 Graduate Institute of Industrial Management |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 68 |
| 中文關鍵詞: | 供應鏈 、資訊分享 、決策制定協調 、損耗性商品 、動態規劃 、供應商管理庫存 、寄售 |
| 外文關鍵詞: | supply chain, dynamic programming, consignment, VMI, information sharing, decision-making coordination, perishable items |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文探討具有損耗性的商品在一簡單的供應鏈之中,資訊分享和決策制定協調對其成本之影響。我們設定在單一製造商及單一零售商的結構下,當下游零售商面對著跟時間與價格相依的需求時的環境,研究四種不同的供應鏈整合策略,分別為無資訊分享和無決策制定協調策略、完全資訊分享和無決策制定協調策略、供應商管理庫存整合策略及既受整合策略。
探討在四個策略之下,供應鏈成員會採取不同的補貨模式來最大化自身的利潤,在無資訊分享和無決策制定協調策略的模式下,零售商產生對自己最佳的補貨排程而驅使製造商進行逐批補貨;若完全資訊分享後,零售商產生的補貨排程會分享給製造商,因而使製造商採取最佳化的動態經濟批量模式;供應商管理庫存整合策略與寄售整合策略的模式下,由於整個供應鏈分享資訊、統一決策,故可將供應鏈視為整合單一的計劃者,我們發展一個資訊相互分享且系統協調的模型,目標為產生最佳的補貨排程並使整體系統的利潤最大化。
本文的目的在量化和分析當供應鏈採用上述不同整合策略且產品具有損耗性特質時,資訊分享和決策制定之協調所產生的價值,並且檢視供應鏈上因資訊分享和決策制定協調產生之價值是如何分配在成員之間,我們利用數值分析來輔助了解可能的情形為何,並透過敏感度分析來了解在參數變動下,對各整合策略績效的影響。
This study is to discuss the impact of information sharing and decision-making coordination for perishable items in a supply chain consisting of a single retailer, and upstream manufacturer. We consisting of four varying-level strategies for integrating a supply chain-including “no information sharing and no coordination”, “full information sharing and no coordination”, “Vendor Managed Inventory”, and “Consignment”.
Depending on the four strategies, members of a supply chain tend to adopt different replenishment model to maximum their profit. We assume that the downstream retailer faces a continuous time-varying and retailer-price-varying demand and generate his own optimal replenishment schedule to trigger the upstream manufacturer replenishment. On the other hand, we develop a system coordination replenishment model with the objective of maximum whole system profit to generate the common replenishment schedule under centralized decision making.
Our objective is to quantify and analyze value generated from a system of information sharing and decision coordination for perishable items in a whole supply chain according to aforementioned four different strategies, and then, to observe how the value is distributed among members of the chain. In the study, data simulation analysis is used to investigate all possible situations, and sensitivity analysis to find out effects of variable parameters on each strategy.
[1] 黃惠民、謝志光,2000,物流管理與供應鏈導論,台中,滄海。
[2] 葉蕙華(2006), Information sharing and decision -making coordination in supply chain(供應鏈中資訊分享與決策制定之協調),國立中央大學工業管理研究所碩士論文。
[3] 鄒易宏(2007), Information Sharing and Decision Coordination or Perishable Items in a Supply Chain(損耗性商品在供應鏈中之資訊分享與決策制定之協調),國立中央大學工業管理研究所碩士論文。
[4] Bernstein, F., Chen, F. & Federgruen, A. (2006), Coordinating supply chains with simple pricing schemes: The role of vendor-managed inventories, Management Science, Vol.52, No.10, pp1483-1492.
[5] Cachon, G., & Fisher, M. (2000), “Supply chain inventory management and the value of shared information”, Management Science Vol.46, No.8 pp1032– 1048.
[6] Croson, R. & Donohue, K., (2006), “Behavioral causes of the bullwhip effect and the observed value of inventory information”, Management Science, Vol.52, No.3, pp323-336.
[7] Cetinkaya, S. & Lee, C. Y., (2000), "Stock replenishment and shipment scheduling for vendor-managed inventory systems," Management Science, Vol. 46, Iss. 2, pp.217-232.
[8] Chen, F., Drezner, Z., Ryan, J.K., & Simchi-Levi, D. (2000). ”Quantifying the bullwhip effect in a simple supply chain: the impact of forecasting, lead times, and information”, Management Science Vol. 46 No.3, pp436– 443.
[9] Chen, J.M., & Chen, T.H. (2007),” The profit-maximization model for a multi-item distribution channel” Transportation Research, Part E 43, pp338–354
[10] Dobrila, P., Rajat, R., & Radivoj, P., (1998), “Modeling and simulation of a supply chain in an uncertain environment”, European Journal of Operational Research Vol.109, pp299-309.
[11] Dong, Y. & Xu, K. (2002), "A supply chain model of vendor managed inventory", Logistics & Transporation Review, Vol. 38E, pp75-95.
[12] De Toni, A.F., & Zamolo, E., (2005). “From a traditional replenishment system to vendor-managed inventory: a case study from the household electrical appliances sector”. International Journal of Production Economics, Vol.96, No.1, pp63-79.
[13] Eillinger, A.E., Tayer, J.C., & Daugherty P.J. (1999), “Automatic replenishment programs and level of involvement: Performance implications”, International Journal of Logistics Management, 10, pp25-36
[14] Faraj, S. & Xiao, Y. (2006), “Coordination in fast-response organizations”, Management Science, Vol.52, No.8, pp1155-1169.
[15] Fiala, P. (2005), “Information sharing in supply chain”, Omega, Vol.33, pp 419-423.
[16] Forrester, J.W. (1958),” Industrial dynamic - a major breakthrough for decision makers”, Harvard Business Review, Vol.36, No.4, pp37-66.
[17] Gaur, V., Giloni, A., & Seshadri, S. (2005), “Information sharing in a supply chain under ARMA demand”, Management Science, Vol.51, No.6, pp961-969.
[18] Gavirneni, S. (2006), “Price fluctuations, information sharing, and supply chain performance”, European Journal of Operational Research, Vol.174, No.3 , pp1651-1663.
[19] Ghare, P.M. & Schrader, G.F. (1963), “A model for an exponentially decaying inventory.” Journal of Industrial Engineering, Vol. 14, pp238-243.
[20] Goyal, S.K. (1977), “An integrated inventory model for single supplier-single customer problem,” International Journal of Production Research Vol. 15, pp107-111.
[21] Harris, F.W. (1913), “How many parts to make at Once”, The Magazine of Management, Vol.10, pp135-136.
[22] Huang, G..Q., Lau, S.K., Wang, Y.Z., & Humphreys, P. K.,(2008)” Impacts of sharing information of demand patterns on supply chain performance”, International Journal of Enterprise Network Management, Vol. 2, No. 1,pp 47 - 71
[23] Hsieh, C.C., & Wu, C.H. (2008)” Capacity allocation, ordering, and pricing decisions in a supply chain with demand and supply uncertainties”, European Journal of Operational Research Vol. 184, pp667–684.
[24] Jeuland, A., & Shugan, S.M(1983). “Managing channel profit”, Marketing science, Vol.2, No.3 239-272
[25] Kim, G.J., Chatfield, D., Harrison, P.T. & Hayya J.C. (2006),” Quantifying the bullwhip effect in a supply chain with stochastic lead time”, European Journal of Operational Research, Vol.173, No.2, pp617-636.
[26] Lariviere, M.A. (1999), “Supply chain contracting and coordination with stochastic demand” In S. Tayur, R. Ganeshan, & M. Magazine (Eds.), Quantitative models for supply chain management, Norwell, MA:Kluwer Academic Publishers, pp234-268
[27] Lau, J.S.K., Huang, G.Q., & Mak, K.L. (2002), “Web-based simulation portal for investigating impacts of sharing production information on supply chain dynamics form the perspective of inventory allocation”, Integrated Manufacturing System, Vol.13, No.5, pp345-358.
[28] Lee, H.L., Padamanabhan, V.(1997), “The bullwhip Effect in supply chains”, SLOAN Management Review, spring. pp93-101,
[29] Lee, H.L., Padhamanabhan, V., & Whang, S., (1997), “Information distortion in supply chain: The bullwhip effect.” Management Science, Vlo.43, No.4, pp546-558
[30] Lee, H.L., So, K.C., & Tang, C. (2000), “The value of information sharing in a two-level supply chain”, Management Science Vol. 46 No.5, pp626– 643.
[31] Lee, H.L. & Whang, S. (1999), “Decentralized multi-echelon supply chains: Incentive and information”, Management Science, Vol.45, No.5, pp633-640.
[32] Lee, H.L. & Whang, S. (2000), “Information sharing in supply chain”, International Journal of Technology Management, Vol.20, No.3-4, pp373-387.
[33] Li, X. & Wang, Q. (2007), “Coordination mechanisms of supply chain systems”, European Journal of Operational Research, Vol.179, No.1, pp1-16.
[34] Matthew, A.W., Eric, J. & Davis, T. (1999), “Vendor-managed inventory in the retail supply chain”, Journal of Business Logistics , 20, pp183-195
[35] Nahmias, S. (1982), “Perishable inventory theory: A review.” Operations Research, Vol. 30, No. 4, pp680-708.
[36] Naish, H.F.(1994), “Production smoothing in the linear quadratic inventory model “, Quarterly Journal of Economics, Vol. 104, pp864-875.
[37] Nienhaus, J., Ziegenbein, A., & Schoensleben P. (2006), “How human behavior amplifies the bullwhip effect. A study based on the beer distribution game online”, Production Planning & Control, Vol.17, No.6, pp547-557.
[38] Ozer, O. & Wei, W. (2006), “Strategic commitments for an optimal capacity decision under asymmetric forecast information”, Management Science, Vol.52, No.8, pp1238-1257.
[39] Pasternack, B. (1985), “Optimal pricing and return policies for perishable commodities.”, Marketing Science, Vol.4, No.2, pp166-176
[40] Raafat, F. (1991), “Survey of literature on continuously deteriorating inventory model.” Journal of Operational Research Society, Vol. 42, No. 1, pp. pp27-37.
[41] Richard, M.,(1997). “Quantifying the bullwhip effect in supply chains”, Journal of Operations Management, Vol.15, pp89-100
[42] Sahin, F. & Robinson, E.P. (2002), “Flow coordination and information sharing in supply chains: review, implications, and directions for future research”, Decision Sciences, Vol.35, No.4, pp505-536.
[43] Samaddar, S., Nargundkar, S. & Daley M. (2006), “Inter-organizational information sharing: The role of supply network configuration and partner goal congruence”, European Journal of Operational Research, Vol.174, No.2, pp 744-765.
[44] Sarmah, S.P., Acharya, D. & Goyal, S.K. (2006), “Buyer vendor coordination models in supply chain management”, European Journal of Operational Research, Vol.175, No.1, pp1-15.
[45] Shin, H., & Benton, W.C. (2007), “A quantity discount approach to supply chain coordination”, European Journal of Operational Research, Vol.180, No.2, pp601-616.
[46] Spengler, J. (1950), “Vertical integration and antitrust policy”, Journal of Political Economy” Vol.58, No.4, pp347-352.
[47] Taylor, T., (2002), “Supply chain coordination under channel rebates with sales effort effects” Management science, Vol.48, No.8, pp992-1007
[48] Wang, J., Jia, J., & Takahashi K. (2005), “A study on the impact of uncertain factors on information distortion in supply chains”, Production Planning & Control, Vol.16, No.1, pp2-11.
[49] Warren, A., & Peers, M. (2002) ,“Video retailers have day in court-Plaintiffs say supply deals between Blockbuster Inc. and studios violate laws.” Wall Street Journal (June 13) B10
[50] Weng, Z.K. (1995) “Coordination and quantity discounts” Marketing science, Management Science, Vol.41, No.9, pp1509-1522
[51] Weng, Z.K., & Wong, R.T., (1993). “General models for the supplier’s all-unit quantity discount policy,” Naval Research Logistics, 40, pp971-991
[52] Whang, S. (1995), “Coordination in operations: a taxonomy”, Journal of Operations Management, Vol.12, pp413-422.
[53] Wong. C.Y.(2007), “The implications of information sharing on bullwhip effects in a toy supply chain” International Journal of Risk Assessment and Management , Vol.7, No.1, pp4 - 18.
[54] Xu, H.P. & Wang H.P. (1992), “Optimal inventory policy for perishable items with time proportional demand”, IIE Transaction, Vol.24, No.5, pp105-110.
[55] Yu, Z., Yan, H., & Cheng, T.C.E.(2001), “Benefits of information sharing with supply chain partnerships”, Industrial Management & Data System, Vol.101, No.3, pp114-119.
[56] Yao, Y., & Dresner, M.E., (2007) “The inventory value of information sharing, continuous replenishment, and vendor-managed inventory”, Transportation Research, Part E
[57] Fazel, Z., M.H., Pourakbar, M., & Turksen, I.B.,(2008) “A Fuzzy agent-based model for reduction of bullwhip effect in supply chain systems”, Expert Systems with Applications, Vol. 34, pp1680–1691