| 研究生: |
戴愷頫 Kai-Fu Tai |
|---|---|
| 論文名稱: |
嗜酸熱硫化葉菌中去氧核醣核酸結合蛋白Saci_1212之結構性及功能性分析 Structural and Functional Analysis of the DNA Binding Protein Saci_1212 from the Hyperthermophile Sulfolobus acidocaldarius |
| 指導教授: |
陳青諭
Chin-Yu Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生醫理工學院 - 生命科學系 Department of Life Science |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 53 |
| 中文關鍵詞: | 去氧核醣核酸結合蛋白 、嗜酸熱硫化葉菌 、X射線晶體學 、電子顯微鏡 |
| 外文關鍵詞: | DNA binding protein, Sulfolobus acidocaldarius, X-ray Crystallography, Electron Microscope |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在生物體中,去氧核醣核酸需要被纏繞保存,真核生物以組蛋白作為纏繞核酸的工具,在古生菌中,則有一群分子量7到10 KDa的蛋白質作類似的用途,稱之為「類組蛋白」蛋白質。Sso7c4是硫磺礦硫化葉菌中一個已知的「類組蛋白」蛋白質,本研究的目標蛋白質Saci_1212,則是Sso7c4在嗜酸熱硫化葉菌中的同源蛋白。在先前的研究中已經得知Sso7c4的C端序列(LKEPWK),但正電且結構彈性,會參與去氧核醣核酸的作用。而有趣的是Saci_1212整體結構雖與Sso7c4相似,但C端蛋白質序列(TEEELR)卻帶有3個帶負電荷的麩胺酸殘基,與去氧核醣核酸的電性相排斥。
在本研究中,我們以X光蛋白質晶體繞射的技術得到解析度2.09 埃的Saci_1212蛋白質晶體結構。結構與Sso7c4相似,有著β-loop-β的結構為主體,這樣的折疊構型也與細菌的轉錄調控因子AbrB及 MazE之N端去氧核醣核酸結合區域的結構相似。在蛋白質結構的C端,Sso7c4是一個有彈性的手臂,沒有固定構型;Saci_1212則以三個麩胺酸殘基形成310¬-螺旋的結構,與Sso7c4完全不同。後續以電子顯微鏡拍攝Saci_1212原生型及C端刪除型兩種蛋白質分別以不同的比例與質體PhiX174 RF II DNA作用之影像。從影像分析,得知Saci_1212不同於Sso7c4,不會與去氧核醣核酸有架橋的作用;質體長度並無顯著縮短也顯示它不是一個彎曲者或纏繞者。與C端刪除型相比,原生型完全沒有架橋行為,C端刪除型則有局部架橋,顯示帶負電的C端序列會減少對DNA架橋效應的發生;又根據螢光極化分析的結果,Saci_1212之C端序列刪除後與去氧核醣核酸的結合力上升了20倍,顯示該C端序列降低了整體的結合力,但比較Saci_1212與同源蛋白質Sso7c4的C端刪除型,前者的結合力是後者的24倍,可能有與其他轉錄調控因子競爭去氧核醣核酸結合位的能力,故推測Saci_1212是一個基因轉錄的負調控因子。
Saci_1212 protein, a Sso7c4 homologue, is commonly believed to be a histone-like protein involved in genomic DNA compaction from Sulfolobus acidocaldarius. Although sequence alignments share high similarity (Saci_1212 vs Sso7c4: 66% identity), their C-termini are quite different in amino acid level. In previous study, we have been demonstrated that basic and flexible C-terminal ends of Sso7c4 (LKEPWK) are involved in binding and bending DNA whereas C-terminus of Saci_1212 (TEEELR) contains three glutamate residues which disfavor to interact with DNA due to the negative charge repulsions.
Here, to obtain a detailed understanding of its architectural properties, we present the crystal structure of wild type Saci_1212 at 2.09 Å resolution. The overall structure of Saci_1212 is similar to Sso7c4 which forms a swapped β-loop-β ′Yin-Yang′ topology. This fold resembles the N-terminal DNA-binding domain of both AbrB and MazE, which are transcriptional regulators in bacteria. The two basic C-termini of Sso7c4 are disordered owing to a lack of corresponding density in the crystal. However, the two C-termini of Saci_1212 adopt the 310-helical conformation by three glutamate residues. Two C-termini of Saci_1212 are quite different from that of Sso7c4 either in amino acid sequence or secondary structure. In fluorescence polarization binding assays, C-terminally truncated proteins exhibited higher binding affinity to 20-bp DNA than the wild-type protein to approximately 20-fold. These FP data further show that the C-terminal ends of Saci_1212 decrease the interaction with DNA. As shown in electron microscopy (EM) images, wild-type Sso7c4 compacts DNA through bridging and bending interactions, whereas the Saci_1212 protein binds DNA without any bridging phenomenon and no compaction of the DNA occurs. A functional role for Saci_1212 as negative transcriptional regulator is suggested.
1. She, Q., et al., The complete genome of the crenarchaeon Sulfolobus solfataricus P2. Proc Natl Acad Sci U S A, 2001. 98(14): p. 7835-40.
2. Chen, L., et al., The genome of Sulfolobus acidocaldarius, a model organism of the Crenarchaeota. J Bacteriol, 2005. 187(14): p. 4992-9.
3. Agback, P., et al., Architecture of nonspecific protein-DNA interactions in the Sso7d-DNA complex. Nat Struct Biol, 1998. 5(7): p. 579-84.
4. Gao, Y.G., et al., The crystal structure of the hyperthermophile chromosomal protein Sso7d bound to DNA. Nat Struct Biol, 1998. 5(9): p. 782-6.
5. Wardleworth, B.N., et al., Structure of Alba: an archaeal chromatin protein modulated by acetylation. EMBO J, 2002. 21(17): p. 4654-62.
6. Hsu, C.H. and A.H. Wang, The DNA-recognition fold of Sso7c4 suggests a new member of SpoVT-AbrB superfamily from archaea. Nucleic Acids Res, 2011. 39(15): p. 6764-74.
7. Lin, B.L., et al., The Arginine Pairs and C-Termini of the Sso7c4 from Sulfolobus solfataricus Participate in Binding and Bending DNA. PLoS One, 2017. 12(1): p. e0169627.
8. Nightingale, K., et al., Evidence for a shared structural role for HMG1 and linker histones B4 and H1 in organizing chromatin. EMBO J, 1996. 15(3): p. 548-61.
9. Swinger, K.K. and P.A. Rice, IHF and HU: flexible architects of bent DNA. Curr Opin Struct Biol, 2004. 14(1): p. 28-35.
10. Schneider, R., et al., An architectural role of the Escherichia coli chromatin protein FIS in organising DNA. Nucleic Acids Res, 2001. 29(24): p. 5107-14.
11. Rimsky, S., Structure of the histone-like protein H-NS and its role in regulation and genome superstructure. Curr Opin Microbiol, 2004. 7(2): p. 109-14.
12. Luijsterburg, M.S., et al., The major architects of chromatin: architectural proteins in bacteria, archaea and eukaryotes. Crit Rev Biochem Mol Biol, 2008. 43(6): p. 393-418.
13. Adachi, H., et al., Application of a two-liquid system to sitting-drop vapour-diffusion protein crystallization. Acta Crystallographica Section D, 2003. 59: p. 194-196.
14. Otwinowski, Z. and W. Minor, Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol, 1997. 276: p. 307-26.
15. Winn, M.D., et al., Overview of the CCP4 suite and current developments. Acta Crystallogr D Biol Crystallogr, 2011. 67(Pt 4): p. 235-42.
16. Langer, G., et al., Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7. Nat Protoc, 2008. 3(7): p. 1171-9.
17. Emsley, P., et al., Features and development of Coot. Acta Crystallogr D Biol Crystallogr, 2010. 66(Pt 4): p. 486-501.
18. Murshudov, G.N., et al., REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr D Biol Crystallogr, 2011. 67(Pt 4): p. 355-67.
19. Griffith, J.D. and G. Christiansen, Electron microscope visualization of chromatin and other DNA-protein complexes. Annu Rev Biophys Bioeng, 1978. 7: p. 19-35.
20. Hartig, S.M., Basic image analysis and manipulation in ImageJ. Curr Protoc Mol Biol, 2013. Chapter 14: p. Unit14 15.
21. Zorzini, V., et al., Escherichia coli antitoxin MazE as transcription factor: insights into MazE-DNA binding. Nucleic Acids Res, 2015. 43(2): p. 1241-56.
22. Vaughn, J.L., et al., Novel DNA binding domain and genetic regulation model of Bacillus subtilis transition state regulator abrB. Nat Struct Biol, 2000. 7(12): p. 1139-46.
23. Albright, R.A. and B.W. Matthews, How Cro and lambda-repressor distinguish between operators: the structural basis underlying a genetic switch. Proc Natl Acad Sci U S A, 1998. 95(7): p. 3431-6.
24. Beamer, L.J. and C.O. Pabo, Refined 1.8 A crystal structure of the lambda repressor-operator complex. J Mol Biol, 1992. 227(1): p. 177-96.
25. Clarke, N.D., et al., The DNA binding arm of lambda repressor: critical contacts from a flexible region. Science, 1991. 254(5029): p. 267-70.
26. Albright, R.A. and B.W. Matthews, Crystal structure of lambda-Cro bound to a consensus operator at 3.0 A resolution. J Mol Biol, 1998. 280(1): p. 137-51.
27. Hubbard, A.J., et al., Role of the Cro repressor carboxy-terminal domain and flexible dimer linkage in operator and nonspecific DNA binding. Biochemistry, 1990. 29(39): p. 9241-9.