| 研究生: |
黃咨翰 Tzu-Hang Huang |
|---|---|
| 論文名稱: |
雷達接收機多頻帶疊合之時域重建方法 Signal reconstruction method using multi-band overlapping of wide-band receiver |
| 指導教授: |
徐國鎧
Kuo-Kai Shyu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 超寬頻雷達 、頻率取樣 、類比數位轉換器 、傅立葉轉換 |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
超寬頻雷達相較一般傳統連續波雷達其發射波型為極短的高斯脈衝波,相對頻寬占了20%以上,其優點是因其超寬頻和高分辨力的特性,可獲得目標物的細微動量的時域表現,因此窄頻雷達的技術很難使用在超寬頻雷達。在接收機部分因其波形為極窄波形(ns量級)的瞬時信號,要完整保留回波的精細響應,取樣的問題是一大挑戰,若要取得不失真的波形,在類比數位轉換器上的限制就需要高達數十GHz的取樣率,成本和製造的困難,導致很難實現。本研究用於頻率取樣重建方法,利用傅立葉轉換式,使用混頻器及振盪器等射頻元件滿足積分式,將工作頻帶劃分多個通道,而ADC取樣率的限制速率降低到子頻寬的頻寬範圍,取樣為頻率係數,後端數位處理結合多組低速ADC輸出的值進行綜合得到輸出波型。最後本研究使用商用規格微波元件實作寬頻雷達的接收機雛形,並將原需要的ADC取樣速率降至十倍以上。
The utra-wideband radar transmitting gaussian pulse is different from traditional radar. The bandwidth with respect to the center frequency of the utra-wideband radar is above 20 percent. The utra-wideband radar has advantage in ultra-wideband and high resolution which can get the fine momentum of measuring target in time-domain. However, significant implementation challenges arise as well due to the large bandwidths. The analog-to-digital converters in the receiver must arrive GHz sample rates in order to completely capture the UWB signal whose pulse’s width is nanoseconds, so the cost of radar is very high and it is hard to realize. This paper uses the frequency domain approach to address the problem. This method is using mixer, oscillator and integrator to implement the Fourier transform. In the proposed architecture, multiple channels separating the spectrum of input signal are parallel to one another. Then, the ADC samples the bandwidth of sub channels. Combining these frequency components and inverse Fourier transform can obtain the completely time-domain waveform. Finally this paper not only uses commercial RF components to implement the prototype of broadband radar receiver but also reduces the restriction in ADC sample rate about ten times.
[1] 向敬成、張明友等編著,「雷達系統」,五南圖書,台北,2004。
[2] Raúl Chávez-Santiago and Ilangko Balasingham, “Ultrawideband Signals in
Medicine” IEEE Signal processing magazine, November 2014.
[3] Wei Hu, Zhangyan Zhao, Yunfeng Wang, Haiying Zhang, and Fujiang Lin,
“Noncontact Accurate Measurement of Cardiopulmonary Activity Using a
Compact Quadrature Doppler Radar Sensor”, IEEE Transactions on
biomedical engineering, Vol. 61,No.3, March 2014, pp.725-735.
[4] Sun J. and M. Li, “Life detection and location methods using UWB impulse
radar in a coal mine”, Mining Science and Technology, Vol. 21, 689-691,
2011.
[5] Kumar, Z. Li, Q. Liang, B. Zhang, and X. Wu, “Experimental study of
through-wall human detection using ultra wideband radar sensors”,
Measurement, vol. 47, pp. 869-879, Jan. 2014.
[6] Pieter J. A. Harpe, Ben Büsze, Kathleen Philips, and Harmke de Groot, “A
0.47–1.6 mW 5-bit 0.5–1 GS/s Time-Interleaved SAR ADC for Low-Power
UWB Radios”, IEEE Journal Of Solid-State Circuits, Vol. 47,No. 7, July
2012.
[7] Sebastian Hoyosand, and Brian M. Sadler, “Frequency-Domain
Implementation of the Transmitted-Reference Ultra-Wideband Receiver”,
IEEE Transactions On Microwave Theory And Techniques, Vol. 54, No. 4
April 2006.
[8] Shaoshu Sha, Jinghong Chen, and Mingyu Lu, “Efficient Measurement of
Impulses Based on Frequency-Domain Approach”, IEEE Transactions On
Instrumentation And Measurement, Vol.61, No.6, June 2012.
[9] H. J. Lee, D. S. Ha, and H. S. Lee, “A frequency-domain approach for
all-digital CMOS ultra wideband receivers,” IEEE Conference on Ultra
Wideband Systems and Technologies, pp. 86-90, November 2003.
[10] Yazhou Wang, Quanhua Liu, Quanhua Liu, “CW and Pulse–Doppler Radar
Processing Based on FPGA for Human Sensing Applications” IEEE
Transactions On Geoscience And Remote Sensing, Vol. 51, No.5, May 2013
[11] R. Ch´avez-Santiago, I. Balasingham, and J. Bergsland, “Ultrawide band Technology in Medicine: A Survey”, Journal of Electrical and Computer Engineering Volume 2012.
[12] Mehran Baboli, Olga Boric-Lubecke, ictor Lubecke, “A New Algorithm for Detection of Heart and Respiration Rate with UWB Signals”, 34th Annual International Conference of the IEEE EMBS, September, 2012
[13] Jing Li, Lanbo Liu, Zhaofa Zeng, and Fengshan Liu, “Advanced Signal Processing for Vital Sign Extraction With Applications in UWB Radar Detection of Trapped Victims in Complex Environments”, IEEE Journal Of Sellected Topics In Applied Earth Observations And Remote Sensing, Vol. 7, No. 3, March 2014.
[14] 李文龍,「5.8GHz都卜勒雷達系統設計與整合」,國立交通大學電
機學院電信學程,碩士論文,民國一○○年三月。
[15] Kleinhempel, W.;Bergmann, D. ; Stammler, W. ; “Speed measure of vehicles with on-board Doppler radar,” Radar 92. International Conference, vol., no., pp.284-287, 12-13 Oct 1992.
[16] Xubo Wang, Anh Dinh, and Daniel Teng, “3–10 GHz ultra wideband front-end transceiver in 0.13μm complementary metal oxide semiconductor for low-power biomedical radar”, In IET Circuits, Devices & Systems, March 2013.
[17] S. Venkatesh, C. Anderson, N. Rivera, and R. Buehrer, “Implementation and analysis of respiration-rate estimation using impulse-based UWB,” In IEEE Military Communications Conference, Oct. 2005.
[18] Berk Gülmezoǧlu, “Indoor Multi-Person Tracking Vi Ultra-Wideband
Radars”, Bilkent University, Master, 2014.
[19] Z. Sahinoglu, S. Gezici, and I. Guvenc, “Ultra-Wideband Positioning
Systems: Theoretical Limits, Ranging Algorithms, and Protocols”, Cambridge, U. K, 2008.
[20] Revision of part 15 of the commission’s rules regarding ultra-
wide band transmission systems”, Federal Communications Commission, Washington, D.C., Tech. Rep. ET Docket 98-153, April 2002.
[21] M. Z. Win and R. A. Scholtz, “Impulse radio: how it works”,
Communications Lett, IEEE, vol.2, pp. 36-8, February 1998.
[22] X. Chen and S. Kiaei, “Monocycle shapes for ultra wideband system”, in IEEE International Symposium on Circuits and Systems, 2002.
[23] 白家豪,「基於超寬頻雷達之非接觸式心跳率及呼吸率監護系統」,國立中央大學電機工程學系,碩士論文,民國一○四年。
[24] 何中庸編譯,「高頻電路設計基礎」,全華科技圖書,台北,2001。
[25] 張盛富、戴明鳳編著,「無線通信之射頻被動電路設計」,全華科
技圖書,台北,2003。
[26] 袁杰編著,「無線電高頻電路」,全華科技圖書,台北,2001。
[27] 袁杰編著,「實用無線電設計」,全華科技圖書,台北,2004。
[28] Voltage Controlled Oscillator Cvco55be-0800-1600 Datasheet ,
Crystek Microwave Inc, 2014.
[29] HMC423MS8 GaAs MMIC Mixer Integrated LO Amplifier, 0.6 -1.3 GHz Datasheet, Analog Devices Inc.
[30] HMC617LP3 GaAs SMT Phemt Low Noise Amplifier, 0.55 - 1.2 GHz
Datasheet, Analog Devices Inc.
[31] David M.Pozar編著,郭仁財譯,「微波工程」,高立圖書,台北
縣,2006。
[32] ADL5380 400 MHz to 6 GHz Quadrature Demodulator Datasheet,
Analog Devices Inc.