| 研究生: |
徐德強 Te-Chiang Hsu |
|---|---|
| 論文名稱: |
不同流道設計對燃料電池陽極面氫氣消耗量的影響 |
| 指導教授: |
洪勵吾
Lih-Wu Hourng |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | 非對稱式指叉型流道 、流場設計 、質子交換膜燃料電池 |
| 外文關鍵詞: | asymmetrical type interdigitated flow-field, channel dimensions design, PEM fuel cell |
| 相關次數: | 點閱:5 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
本文為探討不同的流道設計對氣體在質子交換膜燃料電池流場內造成的影響,模擬三維燃料電池陽極面,在不考慮氫氣加濕以及化學產物產生的條件下,利用米曼方程式,來決定氫氣在觸媒層的反應消耗量。
在此設計蛇型流道、指叉型流道、以及非對稱式指叉型流道三種,並固定流道匝數,改變流道寬、流道深以及肋條寬。三種形式的流道入口皆為相同的質量流率2.5×10-7 kg/s,且出口為固定2大氣壓力。
結果顯示出,本文中的蛇型流道在較高的壓力下能利於氫氣的消耗,但是也會造成流道內的氫氣流動過快,而來不及觸媒層反應;指叉型流道在流道內的流速皆偏低,容易產生死域而不利反應,當流道設計時能造成較高的壓力發生,由於強制對流的效應,亦能提高氫氣的消耗量;本文設計的非對稱式指叉型流道顯示出,在固定流道匝數的條件下,適當地減小出口區域流場的流道寬度時,能對於氫氣的消耗量有一定的幫助。
ABSTRACT
In order to discuss the effect of channel dimensions in the flow-field distributor on the performance of PEM fuel cell, this article simulated the three-dimensional fuel cell at anode side without considering the hydrogen humidification and chemical production and used Michaelis-Menten equation to determine the consumption of hydrogen in catalyst.
Single-path serpentine flow-field, interdigitated flow-field, and asymmetrical type interdigitated flow-field were used for different channel width, channel depth, and rib width by using the same coils of channels. With the same boundary conditions, the inlet mass-flow-rate was 2.5×10-7 kg/s and outlet was 2 atm.
The results demonstrating that serpentine flow-field needs higher pressure to improve consumption of hydrogen, but higher pressure may cause fast speed hydrogen flow pass through the catalyst and wouldn’t have enough time for the reaction. Interdigitated flow-field could easily produce the dead zone which is not good for the reaction of hydrogen, but it would result in higher pressure by decreasing the channel dimension and the higher consumption could be reached. The asymmetrical type interdigitated flow-field in this article showed that if we reduce the channel width of outlet flow-field zone properly, the consumption of hydrogen would be increased.
參考文獻
1.黃鎮江,燃料電池,全華科技圖書股份有限公司,台北,2003。
2. D. L. Wood III, J. S. Yi, and T. V. Nguyen ,” Effect of direct liquid water injection and interdigitated flow field on the performance of proton exchange membrane fuel cells ,” Electrochimica Acta ,Vol. 43, Issue 24, 1998, pp. 3795-3809.
3. A. Kazim, H. T. liu, and P. Forges, “ Modelling of performance of PEM fuel cells with conventional and interdigitated flow field ,”Journal of Applied Electrochemistry, Vol. 29, No. 12, 1999 ,pp. 1409-1416.
4. A. S. Aricò, P. Cretì, V. Baglio, E. Modica, and V. Antonucci ,” Influence of flow field design on the performance of a direct methanol fuel cell,” Journal of Power Sources ,Vol. 91, Issue 2, 2000, pp. 202-209.
5. G. Hu, J. Fan, S. Chen, Y. Liu, and K. Cen ,” Three-dimensional numerical analysis of proton exchange membrane fuel cells (PEMFCs) with conventional and interdigitated flow fields,” Journal of Power Sources, Vol. 136, Issue 1, 2004, pp. 1- 9.
6. X. Li, and I. Sabir ,” Review of bipolar plates in PEM fuel cells: Flow-field designs,” International Journal of Hydrogen Energy ,Vol. 30, Issue 4, 2005, pp. 359-371.
7. S. Dutta, S. Shimpalee, J. W. , and Z. Van ,” Numerical prediction of mass-exchange between cathode and anode channels in a PEM fuel cell,” International Journal of Heat and Mass Transfer ,Vol. 44, Issue 11, 2001, pp. 2029-2042.
8.S. Dutta, S. Shimpalee, J. W. , and Z. Van , “ Three-dimensional numerical simulation of straight channel PEM fuel cells ,” Journal of Applied Electrochemistry,Vol. 30, 2000 ,pp. 135-146.
9.S. Dutta, S. Shimpalee, W. K. Lee, J. W. , and Z. Van ,” Effect of humidity on PEM fuel cell performance part II–numerical simulation ,” Proceedings of ASME IMECE, Nashville, TN, HTD 364-1, 1999, pp. 367-374.
10.S. Shimpalee, and S. Dutta ,” Numerical prediction of temperature distribution in PEM fuel cells ,” Numerical Heat Transfer, Part A, Vol. 38, 2000, pp. 111-128.
11. L. Wang, and H. Liu , “Performance studies of PEM fuel cells with interdigitated flow fields ,” Journal of Power Sources, Vol.134, Issue 2, 2004, pp. 185-196.
12.羅世坤,流場設計對質子交換膜燃料電池性能影響之研究,國立中央大學機械工程研究所碩士論文,2003。
13.涂正輝,質子交換膜燃料電池之三維流道設計與熱質傳分析, 國立成功大學機械工程學系碩士論文,2003。
14. E. Hontañón, M. J. Escudero, C. Bautista, P. L. García-Ybarra, and L. Daza , “Optimisation of flow-field in polymer electrolyte membrane fuel cells using computational fluid dynamics techniques ,” Journal of Power Sources, Vol. 86, Issue 1-2, 2000, pp. 363-368.
15. A. Kumar, and R. G. Reddy ,” Effect of channel dimensions and shape in the flow-field distributor on the performance of polymer electrolyte membrane fuel cell ,” Journal of Power Sources, Vol. 113, Issue: 1, 2003, pp. 11-18.
16. A. Kumar, and R. G. Reddy , “ Modeling of polymer electrolyte membrane fuel cell with metal foam in the flow-field of the bipolar/end plates ,” Journal of Power Sources, Vol. 114, Issue 1, 2003, pp. 54-62.
17. Y. G. Yoon, W. Y. Lee, G. G. Park, T. H. Yang, and C. S. Kim , “ Effects of channel configurations of flow field plates on the performance of a PEMFC,” Electrochimica Acta ,Vol. 50, Issue 2-3, 2004, pp. 705-708.
18.朱思瑜,流道面積比及檔板位置對具交叉型流道質子交換膜燃料電池電池性能的影響,華梵大學機電工程學系碩士論文,2004。
19.洪振益,質子交換膜燃料電池燃料流道入出口幾何設計與流場分析,國立成功大學機械工程學系碩士論文,2003。
20.李定奧,觸媒的原理與應用,國立編譯館主編,正中書局印行。
21.H. Scott Fogler ,” Elements of Chemical Reaction Engineering ,” Prentice Hall International Series in the Physical and Chemical Engineering Sciences.
22.李秉傑,邱宏明,王一凱,非均勻系催化原理與應用,渤海堂文化公司印行,台北,1988。
23.FLUENT 6.0 Users Guide Documentation, Fluent Inc., Lebanon, New Hampshire, 2001.