| 研究生: |
黃韋勳 Wei-Hsun Huang |
|---|---|
| 論文名稱: |
透明導電薄膜及射極層對矽基太陽能電池影響之研究 Influence of transparent conductive oxide film and emitter layer on the silicon-based solar cell |
| 指導教授: |
張正陽
Jenq-Yang Chang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | 異質接面太陽能電池 、透明導電薄膜 、射極層 |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
透明導電氧化層(Transparent Conductive Oxide, TCO)具有良好的光穿透性及導電性,經常被應用於太陽能電池上。而藉由調變TCO之功函數使TCO與半導體之間的能帶較為匹配,可有效提升太陽能電池之填充因子(Fill Factor, FF)。此外,使用不同機台沉積與TCO接觸之射極層,因具備不同薄膜特性,其鈍化效果(passivation)及吸收係數(absorption)分別對太陽能電池之開路電壓(open circuit voltage, VOC)及短路電流密度(short current, JSC)有不同的影響。
本研究第一部分利用模擬軟體AMPS-1D探討ITO功函數對異質接面太陽能電池之影響,接著使用射頻磁控濺鍍機(RF magnetron sputter)製備材料為氧化銦錫(ITO)的TCO薄膜,藉由使用紫外光臭氧清洗機(UV-Ozone stripper)調變ITO之功函數範圍為4.5eV至5.0eV,並將調變過後的ITO薄膜應用於電子迴旋共振化學氣相沉積法(Electron Cyclotron Resonance Chemical Vapor Deposition, ECR-CVD)成長的矽基太陽能電池上,以探討其對電池各項光電特性與轉換效率之影響。研究結果顯示,提升ITO之功函數至5.0eV適用於與射極層接觸之正面ITO,能有效將太陽能電池之填充因子從0.535提升至0.594,轉換效率從9.76%提升至12.14%;而降低ITO之功函數至4.5eV適用於與背表面電場接觸之背面ITO,能有效將填充因子從0.53提升至0.54,轉換效率從10.9%提升至11.22%。
本研究第二部份使用不同設備探討不同結構的異質接面矽晶太陽能電池,及其光電特性之變化。結果顯示使用PECVD沉積的異質接面矽晶太陽能電池之射極層能獲得較好的鈍化效果,其開路電壓能提升2.98%;而使用ECR-CVD沉積的異質接面矽晶太陽能電池之射極層能具有較低的電阻率及吸收,其短路電流能提升9.25%,轉換效率從8.28%提升至11.53%。
Transparent conductive oxide layer (TCO) with good optical transmittance and conductivity, is often applied to the solar cell. Through the modulation of work function of TCO to align energy band between TCO and semiconductor, enable to improve the fill factor (FF) of the solar cell effectively. In addition, deposition of emitter layer with different machines, its passivation and absorption coefficient effect open-circuit voltage (VOC) and short circuit current density (JSC) of the solar cell respectively because of different film properties
In the first part, we use simulation software AMPS-1D to investigate the effect of the work function of ITO on heterojunction with intrinsic thin layer (HIT) solar cells. And then fabricate indium tin oxide (ITO) of the TCO film with RF magnetron sputtering process. Through different UV-ozone stripper process temperature and time, modulate the work function of ITO from 4.5 eV to 5.0 eV, and applied the result to silicon based solar cells deposited by electron cyclotron resonance chemical vapor deposition (ECR-CVD), in order to investigate its effect on optical properties, electrical properties and conversion efficiency of the solar cells. The results show that increase the work function of ITO to 5.0 eV is applied to the front ITO contacted with the emitter, will effectively improve fill factor from 0.535 to 0.594, the conversion efficiency from 9.76 % to 12.14 %; and decrease the work function of ITO to 4.5 eV is applied to the back ITO in contacted with the back surface field, will effectively improve the fill factor from 0.53 to 0.54, the conversion efficiency from 10.9 % to 11.22 %.
In the second part, we investigate the different structures of heterojunction silicon solar cells with different equipment, and its variation of optical and electrical characteristics. The results show that the emitter of heterojunction silicon solar cell deposited with PECVD get better passivation effect, improving the open circuit voltage 2.98%; and deposited with ECR-CVD have a lower resistivity and absorption, improving the short circuit current 9.25%. And improve the conversion efficiency from 9.25 % to 11.53 %.
[1] 中國礦冶工程學會,取自http://www.cimme.org.tw/new/PDF-file/5803/013-027.pdf
[2] 台電月刊,取自http://tpcjournal.taipower.com.tw/article/index/id/326/page/1
[3] German Advisory Council on Global Change,http://www.wbgu.de/en/home/
[4] ITRPV Edition 2015_Revision 1,取自http://www.itrpv.net/Home/
[5] 黃惠良,太陽電池,五南出版社,民國九十七年。
[6] E. Centurioni and D. Iencinella, "Role of front contact work function on amorphous silicon/crystalline silicon heterojunction solar cell performance," IEEE Electron Device Letters, vol. 24, no. 3, 177–179, Mar. (2003).
[7] M. W. M. van Cleef, J. K. Rath, F. A. Rubinelli, C. H. M. van der Werf, R. E. I. Schropp, and W. F. van der Weg, "Performance of heterojunction p[sup +] microcrystalline silicon n crystalline silicon solar cells," Journal of Applied Physics, vol. 82, no. 12, p. 6089, (1997).
[8] M. Taguchi et al., "24.7% record efficiency HIT solar cell on thin silicon wafer," IEEE Journal of Photovoltaics, vol. 4, no. 1, pp. 96–99, Jan. (2014).
[9] Pelanchon, F., P. Mialhe, and J.P. Charles, “The photocurrent and the open-circuit voltage of a silicon solar-cell”, solar cells, 28(1): p. 41–55, (1990).
[10] Schimpe, R.,Theory of reflection at the facet of a semiconductor-laser. Aeu-Archiv Fur Elektronik Und Ubertragungstechnik-International Journal of Electronics and Communications, 46(2): p. 80–85, (1992).
[11] M. Quirk and J. Serda, Semiconductor Manufacturing Technology, Ch.11 Deposition, (2001).
[12] 莊達人編著, VLSI 製造技術, 高立圖書有限公司, p. 357, (1996).
[23] A. Matsuda and K. Tanaka, Thin Solar Film, Vol. 171, (1982).
[34] R. Robertson, D. Hils, H. Chatham, and A. Gallagher, “Radical species in argon‐silane discharges”, Appl. Phys. Lett, Vol. 544, (1983).
[45] 陳治明,非晶半導體材料與器件,科學出版社,民國八十年。
[56] A. Matsuda, "Microcrystalline silicon. Growth and device application", Journal of Non-Crystalline Solids, Vol. 338, p. 1–12, (2004).
[17] 楊明輝,透明導電膜(第二版),藝軒圖書出版社,民國一零一年。
[18] 游鈞傑及王駿翰及簡崇恩, "透明導電膜應用於顯示器上之研究", 東南科技大學電子工程系實務專題報告
[19] 李玉華,透明導電膜及其應用,科儀新知,第12卷第一期,(1990),pp. 94 – 102
[20] 谷俊能,ITO在有機發光二極體之應用,工業材料雜誌 188期,(2002), pp. 133-136
[21] 楊賜麟,半導體物理與元件,滄海書局,民國九十九年。
[22] S. M. Sze, Semiconductor devices, physics and technology, 22nd ed. New York: Wiley, John & Sons, (2001).
[23] AMPS-1D, http://www.ampsmodeling.org/
[24] N. Hernández-Como and A. Morales-Acevedo, "Simulation of hetero-junction silicon solar cells with AMPS-1D," Solar Energy Materials and Solar Cells, vol. 94, no. 1, pp. 62–67, Jan. (2010).
[25] W.-K. Oh, S. Q. Hussain, Y.-J. Lee, S. Ahn, and J. Yi, "Study on the ITO work function and hole injection barrier at the interface of ITO/a-si: H(p) in amorphous/crystalline silicon heterojunction solar cells," Materials Research Bulletin, vol. 47, no. 10, pp. 3032–3035, Oct. (2012).
[26] 徐蔚, "The fabrication and optimization of silicon hetero-junction solar cells for high conversion efficiency" ,國立中央大學,(2014).
[27] D. L. Young et al., "Carrier selective, Passivated contacts for high efficiency silicon solar cells based on transparent conducting oxides," Energy Procedia, vol. 55, pp. 733–740, (2014).