跳到主要內容

簡易檢索 / 詳目顯示

研究生: 莊美玲
Mei-ling Chuang
論文名稱: 活性粉混凝土應用於低放射性廢棄物最終處置場工程障壁材料之耐久性評估
指導教授: 黃偉慶
Wei-hsing Huang
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 166
中文關鍵詞: 活性粉混凝土耐久性工程障壁
外文關鍵詞: Reactive Powder Concrete, Durability, Engineering barrier
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用活性粉混凝土(Reactive Powder Concrete, 簡稱RPC)為處置場工程障壁材料,利用試驗結果研判試驗變數對於耐久性影響程度,針對可能遭遇各種環境侵襲,進行耐久性長期試驗;而影響耐久性因素應同時考量使用之材料,並與混凝土試體變數間比較,以提升混凝土品質延長使用年限,以期達到低放處置場服務年限。
    研究結果著重於建立活性粉混凝土耐久性成效之量化分析方法,對延長服務年限及提高工程障壁之信賴度,以期達到預期之成效。經浸泡硫酸鹽溶液之混凝土角柱經12個月期間觀察,添加鋼纖維之試樣長度變化量明顯降低,顯示添加鋼纖維並未因表面腐蝕造成膨脹現象,並發現水膠比之增加對抵抗硫酸鹽侵蝕能力較低。氯離子入侵濃度分析結果發現活性粉混凝土低水膠比及添加卜作嵐礦物摻料,使其內部結構較緻密,氯離子擴散係數較小,但氯離子會持續累積於混凝土表面,造成表層(約20 mm處)氯離子濃度較高,研究主要以擴散係數、孔隙率、孔徑分布判定活性粉混凝土抵抗外來物質入侵之能力。


    Reactive powder concrete (RPC) has been proposed as barrier materials for the construction of engineered barrier in Taiwan. The durability characteristics of RPC in such applications become paramount for the success of the containment of the wastes. The adverse environmental conditions at the disposal site could attack concrete barrier material and results in degradation of the material. Laboratory tests were conducted on RPC with various compositions to investigate the physical and engineering characteristics of RPC. In this study, curing of specimens at elevated temperature of 80℃ accelerated the hydration processes of concrete and thus exhibited higher compressive strength. However, it is accelerated the hydration processes of concrete and thus exhibited higher compressive strength. The resistance of concrete to sulfate attack were tested by submerging RPC specimens submerged in Na2SO4 solution. Based on the volume change data in 12 months, specimens without steel fiber showed greater length changes than those with steel fiber. Also, RPC with higher water to binder ratio (W/B) exhibited lower resistance to sulfate attack. According to the test result, the internal structure of RPC having low W/B and blended with pozzolanic materials is comparatively denser, leading to the low diffusion coefficient under the attack of chloride ions. Bonded chloride ions may constantly accumulate at the surface of concrete within about 3 mm depth from surface. Experimental results indicate that the long-term durability of RPC is significantly improved with the hydration of pozzolanic materials, which produces a very dense structure and thus exhibiting improved durability.

    目錄 I 圖目錄 III 表目錄 VI 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 1 1.3 研究內容 2 第二章 文獻回顧 5 2.1 低放射性廢棄物 5 2.1.1 低放射性廢棄物來源 5 2.1.2 低放射性廢棄物最終處置場 7 2.1.3 低放射性廢棄物最終處置場設計年限 11 2.1.4 國外低放射性廢棄物最終處置場 11 2.1.5 現階段國內低放射性廢棄物最終處置場概念 17 2.1.6 低放射性廢棄物最終處置盛裝容器 19 2.2 活性粉混凝土 21 2.2.1 基本設計原理 22 2.2.2 活性粉混凝土之運用現況 22 2.2.3 添加卜作嵐材料之影響 23 2.2.4 鋼纖維對耐久性之影響 26 2.2.5 高溫養護之影響 29 2.3 混凝土耐久性評估 31 2.3.1 氯離子侵蝕 34 2.3.2 硫酸鹽侵蝕 38 2.3.3 水泥漿體孔隙結構 41 2.3.4 混凝土孔徑分布量測 45 第三章 實驗材料與規劃 53 3.1 實驗材料 54 3.2 實驗設備 59 3.3 試驗內容及方法 65 3.3.1 實驗流程 65 3.3.2實驗變數 67 3.3.3 實驗方法 69 第四章 活性粉混凝土基本試驗結果 81 4.1 抗壓強度試驗 81 4.2 孔隙率試驗 86 4.3 氮氣吸附試驗 93 4.4 X光繞射分析(XRD) 106 4.5 顯微結構觀察 109 4.6 小結 112 第五章 活性粉混凝土耐久性試驗 113 5.1 硫酸鹽浸泡試驗 113 5.1.1 硫酸鹽溶液長度變化試驗 113 5.1.2 硫酸鹽侵蝕濃度剖面 120 5.2 氣體滲透試驗 126 5.3 氯離子入侵濃度分析 130 5.3.1 氯離子浸泡試驗(Ponding test) 130 5.3.2 加速氯離子傳輸試驗(ACMT) 134 5.3.3 氯離子浸泡試驗(Ponding test)與加速氯離子傳輸試驗(ACMT)之關係 141 5.4 不同試驗法之相關性分析 145 5.4.1 抗壓強度與氣體滲透係數之關係 145 5.4.2 孔隙率試驗結果之比較 147 5.4.3 中孔孔隙量與氣體滲透係數之關係 150 5.4.4 孔隙率與氣體滲透係數之關係 151 5.5 小結 153 第六章 結論與建議 155 參考文獻 159

    王起帆、郭志昆、項宗方、邵軍,「活性粉末混凝土200(RPC200)的配制試驗研究」,後勤工程學院學報,第23卷,第1期,第70-74頁,2007。
    朱書賢,「鋼纖維與活性粉混凝土間界面性質研究」,碩士論文,國立臺灣大學土木工程學研究所,臺北 (2000)。
    牟妍樺,「低放處置場混凝土工程障壁受氯離子侵襲之服務年限信賴度研究」,碩士論文,國立中央大學土木工程研究所,中壢 (2013)。
    台灣電力公司,「核能後端營運處蘭嶼貯存場98年運轉年報」(2009)。
    李騰芳、徐力平、廖淑萍、姚錫齡,「活性粉混凝土(RPC)應用之探討」,現代營建,土木技術第二卷,第十期,第108-117頁 (1999)。
    邱怡瑄,「低放處置場工程障壁之溶出失鈣及劣化敏感度分析」,碩士論文,國立中央大學土木工程研究所,中壢 (2009)。
    吳建興,「活性粉混凝土補強混凝土構件與耐久性能之測試研究」,碩士論文,朝陽科技大學營建工程系,台中 (2003)。
    卓世偉,「加速氯離子移動試驗探討氯離子於水泥基複合材料中之傳輸行為」,博士論文,國立臺灣海洋大學材料工程研究所,基隆 (2002)。
    林坤德,「鋼纖維與矽砂含量對活性粉混凝土熱學與力學性質之影響」,碩士論文,國立台灣科技大學營建工程系,台北 (2005)。
    林威廷,「纖維與輔助膠結料應用於水泥基複合材料特性評估」,博士論文,國立臺灣海洋大學河海工程學系,基隆 (2009)。
    屈文俊、秦宇航,「活性粉末混凝土(RPC)研究與應用評述」,結構工程師,第23卷,第5期,第86-92頁,2007。
    武文娟,「摻鋼纖維的活性粉末混凝土(RPC)力學性能影響的研究」,矽谷,第15期,第9頁,2009。
    紀茂傑,「混凝土耐久性影響因素及評估方法之研究」,博士論文,國立台灣海洋大學河海工程學系,基隆 (2002)。
    核研所化工組,“低放射性廢料高完整性盛裝容器(HIC)品質及檢驗規範之研擬(1/1)”,2000。
    黃兆龍,放射性廢棄物設施混凝土結構長期安全規範之研究,行政院原子能委員會委託,2008。
    黃昱崴,「低放射性廢棄物處置用障壁混凝土受硫酸鹽侵蝕之劣化及預估研究」,碩士論文,國立中央大學土木工程研究所,中壢 (2012)。
    楊錦懷、陳振川,「纖維與混凝土界面握裹力研究及纖維混凝土應用於預鑄接頭」,纖維混凝土發展與應用,台北,第77-121頁,1997。
    靳鴻楷,「放射性廢料深層處置場填封用薄漿之流變性與耐久性研究」,碩士論文,國立中央大學土木工程研究所,中壢 (2001)。
    陳振川、苗伯霖、李明君,「超高強高性能混凝土配比及性質研究」,期末報告,財團法人台灣營建研究院,1996。
    陳昱安,「低放處置場工程障壁受氯離子侵蝕服務年限預估研究」,碩士論文,國立中央大學土木工程研究所,中壢 (2012)。
    鄭伯乾,「聚丙烯纖維混凝土之抗裂力學行為」,碩士論文,國立成功大學土木工程研究所,台南 (2003)。
    潘奕銘,「低放射性廢棄物處置場混凝土障壁材料溶出劣化效應評估」,碩士論文,國立中央大學土木工程研究所,中壢 (2007)。
    盧秉瑋,「混凝土工程障壁之氯離子及失鈣劣化行為」,碩士論文,國立中央大學土木工程研究所,中壢 (2006)。
    蕭又禎,「活性粉混凝土製作水溝蓋之初步研究」,碩士論文,朝陽科技大學營建工程系,台中 (2007)。
    Andrade, C. (1993), “Calculation of chloride diffusion coefficients in concrete from ionic migration measurements,” Cement and Concrete Research, Vol. 23, pp.724-742.
    Adeline, R., Lachemi, M. and Blais P. (1998), “Design and Behavior of the sherbrooke footbridge,” International Symposium on high-performance and reactive powder concretes, Sherbrooke, Canada, pp. 89-97.
    Atis C.D. and Karahan O. (2009), “Properties of steel fiber reinforced fly ash concrete,” Construction and Building Materials, Vol. 23, pp. 392-399.
    Bentz, D.P. and Garboczi, E.J. (1991), “Precolation of phases in a three dimensional cement paste microstructural model,” Cement and Concrete Research, Vol. 21, pp. 325-344.
    Cheyrezy, M., Maret, V., and Frouin, L. (1995), “Microstrucyural analysis of RPC (Reactive Powder Concrete),” Cement and Concrete Research, Vol. 25, No. 7, pp.1491-1500.
    Chan, Y. W., and Chu, S. H. (2004), “Effect of silica fume on steel fiber bond characteristics in reactive powder concrete,” Cement and Concrete Research, Vol. 34, pp.1167-1172.
    Chen, Y. S., Li, M. C., Chan, Y. W. and Yang, C. C. (2012), “The relationship between accelerated migration time in ACMT and ponding time in ponding test for cement-based materials,” Journal of Marine Science and Technology, Vol. 20, No. 1, pp. 1-8.
    Cwiraen, A. Penttala V., and Vornanen C. (2008), “Reactive powder based concretes: mechanical purability and hybrid use with OPC,” Cement and Concrete Research, Vol. 38, pp.1217-1226.
    Day R. L., and Marsh B. K. (1988), “Measurement of porosity in blended cement pastes, ” Cement and Concrete Research, Vol. 18, pp. 63-73.
    Dugat, J., Roux N., and Bernier G. (1996), “Mechanical properties of reactive powder concrete,” Material and Structures, Vol. 29, pp.233-240.
    Gregg, S. J. and Sing, K. S. W. Adsorption, surface area, and porosity. London: Academic Press, 1967.
    Goñi S., Frias M., Vegas I., García R. and Vigil de la Villa R. (2012), “Quantitative correlations among textural characteristics of C-S-H gel and mechanical properties: Case of ternary Portland cements containing activated paper sludge and fly ash,” Cement and Concrete Composites, Vol. 34, pp.911-916.
    Han, K., W., Heinonen J., and Bonne A. (1997), Radioactive waste disposal: global experience and challenges, IAEA Bulletin, Vol.39, No.1, pp.33.
    Johannesson, B., Utgenannt, P. (2001), “Microstructural changes caused by carbonation of cement mortar,” Cement and Concrete Research, Vol. 31, pp.925-931.
    Litvan G. G. (1976), “Variability of the nitrogen surface area of hydrated cement paste,” Cement and Concrete Research, Vol. 6, pp.139-144.
    Lee, N. P. and Chisholm D. H., Reactive Powder Concrete., Building Research Levy., Australia, 2005.
    Lee, M. G., Wang, Y. C. and Chiu, C. T. (2007), “A preliminary study of reactive powder concrete as a new repair material,” Construction and Building Materials, Vol. 21, pp. 182-189.
    Linfgreen, H., Geiker, M., Krøyer, H., Springer, N., Skibsted, J. (2008), “Microstructure engineering of Portland cement pastes and mortars through addition of ultrafine silicates,” Cement and Concrete Composites, Vol. 30, No. 8, pp. 686-699.
    Nishikawa, T. and Takatsu, M. (1995), “Fracture behavior of cement paste incorporating mineral addition,” Cement and Concrete Research, Vol.25, No. 6, pp.1218-1224.
    Needham, A. D., Smith, J. W. N. and Gallagher E. M. G. (2006), “The service life of polyethylene geomembrane barriers,” Engineering Geology, Vol. 85, pp. 82-90.
    Matte, V. and Moranville M. (1999), “Durability of reactive powder composites: influence of silica fume on the leaching properties of very low water/binder pastes,” Cement and Concrete Composites, Vol. 21, No. 1, pp. 1-9.
    Miloud, B. (2005), “Permeability and porosity characteristics of steel fiber reinforced concrete,” Asian Journal of Civil Engineering (Building and Housing), Vol. 6, No. 4, pp. 317-330.
    Mendes, A., Sanjayan, J. G., Gates, W. P. and Collins, F. (2012), “The influence of water adsorption and porosity on the deterioration of cement paste and concrete exposed to elevated temperatures, as in a fire event,” Cement and Concrete Composites, Vol. 34, No. 9, pp. 1067-1074.
    Nyame B. K. (1986), “Permeability of normal and lightweight mortars,” Magazine of Concrete Research, Vol. 38, No. 134, pp. 51-53.
    Pel, L., Hazrati, K., Kopinga, K. and Marchand, J. (1998), “Water absorption in mortar determined by NMR,” Magnetic Resonance Imaging, Vol. 16, Nos. 5/6, pp. 525-528.
    Papadakis V. G. (2000), “Effect of supplementary cementing materials on concrete resistance against carbonation and chloride ingress,” Cement and Concrete Research, Vol. 30, No. 2, pp.291-299.
    Robler M. and Odler I. (1985), “Investigations on the relationship between porosity, structure and strength of hydration portland cement pastes,” Cement and Concrete Research, Vol. 15, pp. 320-30.
    Richard P. and Cheyrezy M. (1995), “Composition of reactive powder concretes,” Cement and Concrete Research, Vol. 25, No. 7, pp. 1501-1511.
    Rao G. A. (2003), “Investigations on the performance of silica fume-incorporated cement pastes and mortars,” Cement and Concrete Research, Vol. 33, pp. 1765-1770.
    Ranjani, G. Indu Siva and Ramamurthy, K. (2012), “Behavior of foam concrete under sulphate environments,” Cement and Concrete Composites, Vol. 34, No. 7, pp. 825-834.
    Suryavanshi, A. K., Scantlebury, J. D. and Lyon, S. B. (1996), “Mechanism of Friedel’s salt formation in cement rich in tri-calcium aluminate,” Cement and Concrete Research, Vol. 26, pp. 717-727.
    Sheng, Z., Xi-ling, Z., You-jun, X., and Gui-jun, W. (2007), “Study on the effect of curing system on the strength and microstructure of reactive powder concrete,” Concrete, No. 212, pp. 16-18.
    Torronti J. M. and Maret V. (1996), “High integrity containers for long term storage of nuclear wastes,” 4th Int. Symposium on Utilization of HPC, Paris, pp. 1407-1413.
    Tanikawa, W. and Shimamoto, T. (1999), “Klinkenberg effect for gas permeability and its comparison to water permeability for porous sedimentary rocks,” Hydrology and Earth System Sciences Discussions 3, pp. 1315-1338.
    Whitehurst, E. A. (1951), “Soniscope Tests Concrete Structures”, ACI J. Proc., 47(6), pp. 433-444.
    Xi-ling, Z., Sheng, Z. and You-jun. (2010), “Effect of curing system on the strength and drying shrinkage of RPC,” Concrete, No. 246, pp. 42-44.
    Yang, C. C., Cho, S. W., Chi, Jack M. and Huang R. (2002), “An electrochemical method for accelerated chloride migration test in cement-based materials,” Materials Chemistry and Physics, No. 77, pp. 461-469.
    Yang, C. C. Wang, L. C. (2004), “The diffusion characteristic of concrete with mineral admixtures between salt ponding test and accelerated chloride migration test,” Materials Chemistry and Physics, No. 85, pp. 266-272.
    Zanni, H., M. Cheyrezy, V. Maret, S. Philippot and Nieto P. (1996), “Investigation of hydration and pozzolanic reaction in reactive powder concrete (RPC) using 29Si NMR,” Cement and Concrete Research, Vol. 26, No. 1, pp.93-100.
    Zeng, Q., Li, K., Fen-chong, T. and Dangla, P. (2012), “Pore structure characterization of cement pastes blended with high-volume fly-ash,” Cement and Concrete Research, Vol. 42, No. 1, pp.194-204.

    QR CODE
    :::