| 研究生: |
張皓宇 Hao-Yu Chang |
|---|---|
| 論文名稱: |
以波動數位濾波器實現類比電路仿真器所需的FPGA表格縮減技術 On Table Reduction for WDF based Analog Circuit Emulation on FPGA |
| 指導教授: |
周景揚
Jing-Yang Jou |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 68 |
| 中文關鍵詞: | 數位波動濾波器 、表格縮減 、數位電路 |
| 外文關鍵詞: | Wave Digital Filter, Table Reduction, digital circuit |
| 相關次數: | 點閱:21 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著製程進步,目前的超大型積體電路設計愈來愈複雜,單晶片系統( System on Chip , SOC ) 逐漸成為設計主流,由於系統通常同時包含數位電路與類比電路,因此類比/混合訊號(Analog/mixed-signal, AMS)電路的驗證在開發晶片的流程中變的格外重要。在這篇論文中,我們採用波動數位濾波器(Wave Digital Filter, WDF),將類比電路轉換至對應的數位電路來進行仿真。此方法使用入射波與反射波的方式描述電路特性,可以將每個類比元件對應至波動數位濾波器架構的數位元件,達成與數位電路一起模擬的目標。
本研究根據WDF架構仿真流程之相關文獻,利用小訊號模型將三端的非線性元件拆解成數個雙端元件,本論文以查表的方式替換主動元件中非線性之效應,發現將切割表格的刻度縮小後會增加許多表格的容量。且為了在精準度及硬體成本之間權衡,必須對表格進行數學上的縮減。由實驗結果得知,在節省後的表格與原先表格的比較中,縮減的硬體最少可達99.97%。本研究也修改先前文獻的硬體架構,不需要在FPGA中軟體與硬體間的溝通。利用這兩點的改善;在硬體表現上,可達到20倍的加速,FPGA硬體的使用量與先前的研究也降低90%,由此可看出縮減表格對於波動數位濾波器的硬體仿真上的成效。
With the advance of process technologies, the design of Very-Large-Scale Integration (VLSI) circuits is becoming more complex. System on Chip (SOC) has become one possible option of VLSI design. Because SOC designs usually contain both analog and digital circuits, it is important to have an Analog/Mixed-Signal (AMS) verification flow for chip development. In this thesis, we adopt Wave Digital Filter theory to map analog circuits into digital circuits for emulating analog circuits. This method uses incident and reflected waves to model circuit characteristics. Each analog component can be transformed into corresponding digital component in WDF framework to support the co-simulation with digital circuits.
Based on the relevant research of WDF emulation process, this thesis utilizes the small signal model of three-terminal MOSFET, hybrid-pi model, to decompose it to several two-port elements. We use lookup table to replace the non-linear effect in active element, and discover that decrease the scale of table will increase the table size massively. Owing to compromise the accuracy and hardware cost of table, we have to reduce the capacity of table. From the experimental results, the capacity of table can be reduced by 99.97% after table reduction. In this thesis, we also modify the hardware architecture of previous literature, and does not require communication between the software and the hardware in FPGA. Take the advantage of these two improvements, we can have 20 times faster acceleration in hardware performance. Comparing to previous work, FPGA hardware usage is also reduced by 90%. It demonstrates that table reduction technique is very effective in implementating hardware emulation of the WDF.
[1] G. E. Moore, “Cramming More Components Onto Integrated Circuits,” Proceedings of the IEEE, Jan 1998.
[2] M. Vertregt, “The analog challenge of nanometer CMOS,” Int’l Electron Devices Meeting, pp.1-8, Dec. 2006
[3] Fettweis, “Wave digital filters: Theory and practice,” Proceedings of the IEEE, vol. 74, no. 2, pp. 270–327, 1986.
[4] K. Meerkotter and R. Scholz, “Digital simulation of nonlinear circuits by wave digital filter principles,” IEEE Int’l Symp. on Circuits and Systems, pp. 720–723, 1989.
[5] H. Kutuk and S.-M. Kang, “A field-programmable analog array (FPAA) using switched-capacitor techniques,” in Proc. IEEE Int’l Symp. on Circuits and Systems, vol. 4, 1996, pp. 41-44, 1996.
[6] E. K. Lee and W. L. Hui, “A novel switched-capacitor based field-programmable analog array architecture,” in Field-Programmable Analog Arrays, Springer, pp. 33-50, 1998.
[7] E. K. Lee and P. G. Gulak, “A transconductor-based field-programmable analog array,” in Proc. IEEE Int’l Solid-State Circuits Conf., pp. 198-199, 1995.
[8] B. Pankiewicz, M. Wojcikowski, S. Szczepanski, and Y. Sun, “A field programmable analog array for CMOS continuous-time OTA-C filter applications,” IEEE J. Solid-State Circuits, vol. 37, no. 2, pp. 125-136, 2002.
[9] T. S. Hall, C. M. Twigg, J. D. Gray, P. Hasler, and D. V. Anderson, “Large-scale field-programmable analog arrays for analog signal processing,” IEEE Trans. on Circuits and Systems I: Regular Papers, vol. 52, no. 11, pp. 2298-2307, 2005.
[10] N. Suda & J. Suh & N. Hakim & Y. Cao & B. Bakkaloglu, “A 65 nm Programmable ANalog Device Array (PANDA) for Analog Circuit Emulation,” IEEE Transactions on Circuits and Systems I: Regular Papers, pp. 181-190, Jan 2016.
[11] D. Franken & J. Ochs & K. Ochs, "Generation of Wave Digital Structures for Connection Networks Containing Ideal Transformers," in Proc. IEEE Int. Symp. Circuits and System, vol.1, pp. III-240-III-243, June, 2003.
[12] Y.-S. Han, “A simulation platform for analog circuits using wave digital filters and Nonlinear MOS model,” National Central University, Taiwan, 2015.
[13] H.-P. Yang, “Automatic Construction and Scheduling of the Wave Digital Filter Structures for Analog Emulators,” National Central University, Taiwan, 2016.
[14] C.-H. Wang, “Nonlinear Transistor Model for WDF-Based Analog Emulators,” National Central University, Taiwan, 2016.
[15] H.-P. Yang, H.-J. Hsu, C. Wang, C.-N. J. Liu, and J.-Y. Jou, “Automatic Netlist Transformation for WDF-Based Analog Emulator,” Workshop on Synthesis and System Integration of Mixed Information Technologies (SASIMI), Oct. 2016.
[16] L.-S. Liu, “Fixed-Point Implementation of Wave Digital Filters for Analog Circuit Emulation,” National Central University, Taiwan, 2017
[17] W. Wu, Y.-L. Chen, Y. Ma, C.-N. Liu, J.-Y. Jou, S. Pamarti, and L. He, “Wave Digital Filter based Analog Circuit Emulation on FPGA,” IEEE Int’l Symp. on Circuit and Systems, May 2016.
[18] M.-Y. Li, "Hardware Implementation of Analog Emulator Based on Wave Digital Filters," National Central University, Taiwan, 2017
[19] B. J. Sheu, D. L. Scharfetter, P.-K. Ko, and M.-C. Jeng, “Bsim: Berkeley short-Channel IGFET model for MOS transistors,” IEEE J. Solid-State Circuits, vol. 22, no. 4, pp. 558–566, 1987.
[20] T. Shima, T. Sugawara, S. Moriyama, and H. Yamada, “Three-dimensional table look-up MOSFET model for precise circuit simulation,” IEEE J. Solid-State Circuits, vol. 17, no. 3, pp. 449-454, 1982.
[21] A. Sarti and G. D. Poli, “Toward Nonlinear Wave Digital Filters,” IEEE Trans. on Signal Processing, vol. 47, no. 6, pp. 1654-1668, 1999.
[22] Mathworks Document correlation coefficients, https://www.mathworks.com /help/matlab/ref/corrcoef.html
[23] R. J. Singh , J. V. McCanny, “A Wave Digital Filter Three-Port Adaptor with fine grained pipelining,” Application Specific Array Processors, 1991. Proceedings of the International Conference on, pp. 116 - 128, Sep. 1991.
[24] B. Razavi, “Design of Analog CMOS Integrated Circuits,” McGraw-Hill Higher Education, 2000.
[25] S. Y., Yeh, “Timing and Resource Optimization of Pipelined Analog Emulator Based on Wave Digital Filters,” National Central University, Taiwan, 2015.