| 研究生: |
陸仁凱 Jen-Kai Lu |
|---|---|
| 論文名稱: |
7XXX系含鈧鋁合金的顯微結構與機械性質之分析 Microstructure and Mechanical Properties of 7XXX Series Aluminum Alloys with Scandium |
| 指導教授: |
李雄
Shyong Lee 王建義 Jian-Yih Wang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 鈧 、7XXX系鋁合金 |
| 外文關鍵詞: | scandium, 7XXX series aluminum alloys |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鋁合金因為比強度高、重量輕、高導熱(電)性、良好的延展率與易於加工成形,而被廣泛的利用。鋁合金添加Sc以提高機械性質之研究早年經蘇聯人提出,近年來逐漸受到重視,本實驗用材料亦已成功應用在腳踏車車架、高爾夫球杆頭等實際民生用品上。
本實驗以鈑材的Al-7.9Zn-2.5Mg-2.3Cu合金,和棒材的Al-6.0Zn-2.0Mg合金為對象,均添加~0.1wt.%的Sc和~0.1wt.%的Zr。鈑材經輥軋和棒材經等通道彎角擠製方式,鈑材改變「軋延率」、「拉伸溫度」,棒材改變「擠製方位」、「擠製道次」等參數,期望能提升材料強度並增加7XXX系含鈧鋁合金運用的廣泛性。
由實驗結果可知在添加~0.1wt.%的Sc後,常溫抗拉強度約可提升30MPa,降伏強度約可提升25MPa,延伸率亦可從5%提升至12.3%。鈑材在400℃時有最佳延伸率353.9%;棒材在400℃時有最佳延伸率為329.8%,各項機械性質皆獲得一顯著量的提升。
鈑材當R=40%時,擁有最大的抗拉(583MPa)、降伏(474MPa)強度值和最佳的延性;當R=60%時,強度反而下降~80MPa。在300~500℃下,R=20%的最佳延伸率~395%;R=40%的最佳延伸率~555%,雖然R=20%比R=40%有稍高的高溫機械強度,但延伸率卻大幅降低1.4倍。
棒材透過EACE (Rote A、C1~C3)擠形,經C1的晶粒尺寸約為50μm;經C3的晶粒尺寸約為40μm,可使晶粒細化約20%。當透過EACE (Rote Bc、C1~C8)擠形,經C1的晶粒尺寸約為50μm;經C6的晶粒尺寸約為15μm,可使晶粒細化約70%。
Aluminum alloys have been generally used because of its opposite strength, light weight, high heat and electric conductivity, superior ductility and easily to manufacture. One''s early years, Soviet bring up that aluminum alloys have perfect mechanical properties when adding scandium into alloys. This approach has more and more emphasis recently and is used for the frame of bicycles, the head of golf club and so on.
The experiment adopts Al-7.9Zn-2.5Mg-2.3Cu alloy and Al-6.0Zn-2.0Mg alloy which are all added about 0.1wt.% scandium and about 0.1wt.% zirconium. Metal plate is processed by rolling and metal bar is processed by equal channel angular extrusion. Metal plate changes the rolling reduction ratio and changes the temperature of elongation. Metal bar changes the direction and the frequency of extrusion. By way of changing these parameters, we aspect this method can promote the strength of materials and improve the breadth of 7XXX series of aluminum alloys which are added scandium.
The experiment result exhibit that the tensile strength can promote about 30 MPa, yield strength can promote about 25MPa and elongation can promote from 5% to 12.3% at room temperature when adding about 0.1wt.% scandium into alloys. The excellent elongation of plate is 353.9% and the excellent elongation of bar is 329.8%. We can know that all of the mechanical properties are obvious be promoted when the temperature is 400℃.
When R=40%, the maximum tensile strength of metal plate is 583Mpa, the maximum yield strength is 474MPa and the material has the best elongation. When R=60%, the tensile strength instead of declining about 80MPa. The temperature of all tensile tests are below 300℃ to 500℃. When R=20%, the excellent elongation is about 395%. When R=40%, the excellent elongation is about 555%. Although R=20% has better mechanical strength than R=40%, but the elongation is obvious lower 1.4 times than R=40%.
The bar is used by ECAE. When the extrusion coefficient is Rote A, the grain size is about 50μm after C1 extrusion and is about 40μm after C3 extrusion. After that, the grain size can be thinned down about 20%. When the extrusion coefficient is Rote Bc, the grain size is about 50μm after C1 extrusion and is about 15μm after C6 extrusion. After that, the grain size can be thinned down about 70%.
1. Hatch, J. E., Ed., “Aluminum properties and physical metallurgy”, American Society for Materials, Materials Park, Ohio, 1984.
2. I. J. Polmear, “Light Alloys-Metallurgy of the Light Metals 2nd ed.”, Edward Arnold, London, England, 1989, pp.18-62.
3. “Aluminum metals handbook”, Ninth Edition, American Society for Metals, vol.2, 1980, pp.28-43.
4. G. W. Lorimer and R. B. Nicholson, “Further Results on the Nucleation of Precipitates in the Al-Zn-Mg system”, Acta Metallurgica, vol.14, 1966, pp.1009-1013.
5. P. N. T. Unwin, and R. B. Nicholson, “The Nucleation and Initial Stages of Growth of Grain Boundary Precipitates in Al-Zn-Mg and Al-Mg Alloys”, Acta Metallurgica, vol.17, 1969, pp.1379-1393.
6. C. J. Peel, B. Evans, C. A. Baker, D. A. Bennett, and P. J. Gregson, “The development and application of improved aluminum-lithium alloys”, Proceeding of the second International Aluminum-Lithium Conference, The Metallurgy Society of AIME, California USA, April, 1983, pp.363-392.
7. 劉國雄, 林樹均, 李勝隆, 鄭晃忠, 葉均蔚, “工程材料科學”, 全華科技圖書出版, 1999, pp.339-342。
8. C. E. Deiter, “Mechanical metallurgy”, 3rd ed., McGraw-Hill, 1986, pp.221-227.
9. Thomas H. Courtney, “Mechanical Behavior of Materials”, Second Edition, McGraw-Hill Higher Education, 2000, pp.196-210.
10. L. K. Lamikov and G. V. Samsonov, “Soviet non-ferrous metals res.”, USSR, 1964, pp.9-79.
11. E. A. Marquis and D. N. Seidman, “Nanoscale structure evolution of Al3Sc precipitation in Al(Sc) alloys”, Acta Mater., vol.49, 2001, pp.1909-1919.
12. A. F. Noraman, P. B. Prangnell and R. S. McEwen, “The solidification behavior of dilute aluminum-scandium alloys.”, Acta mater., vol.46, 1998, pp.5715-5732.
13. K. Venkateswarlu, L. C. Pathak, A. K. Ray, Goutam Das, P. K. Verma, M. Kumar and R. N. Ghosh, “Microstructure, tensile strength and wear behaviour of Al-Sc alloy”, Material Science & Engineering, A383, 2004, pp.374-380.
14. D. N. Seilman, E. A. Marquis, and D. C. Dunand, “Precipitation strengthening at ambient and elevated temperature of heat-treatable Al(Sc) alloys”, Acta Materialia, vol.50, 2002, pp.4021-4035.
15. T. G. Nieh, R. Kaibyshev, L. M. Hsiung, N. Nguyen, and J. Wadsworth, “Subgrain formation and evolution during the deformation of an Al-Mg-Sc alloy at elevated temperatures”, Acta Metallurgica, vol.36, 1996, pp.1011-1016.
16. Kyung-Tae Park, Duck-Young Hwang, Young-Kook Lee, Young-Kuk Kim, and Dong Hyuk Shin, “High strain rate superplasticity of submicrometer grained 5083 Al alloy containing scandium fabricated by severe plastic deformation”, Material Science & Engineering, A341, 2003, pp.273-281.
17. F. Musin, R. Kaibyshev, Y. Motohashi, and G. Itoh, “High strain rate superplasticity in a commercial Al-Mg-Sc alloy”, Scripta Materialia, vol.50, 2004, pp.511-516.
18. S. Lee, A. Utsunomiya, H. Akamatsu, K. Neishi, M. Furukawa, Z. Horita and T. G. Langdon, “Influence of scandium and zirconium on grain stability and superplastic ductilities in ultrafine-grained Al-Mg alloys”, Acta Materialia, vol.50, 2002, pp.553-564.
19. Zhimin Yin, Qinglin Pan, Yonghong Zhang, and Feng Jiang, “Effect of minor Sc and Zr on microstructure and mechanical properties of Al-Mg based alloys”, Material Science & Engineering, A280, 2000, pp.151-155.
20. M. A. Munoz-Morris, C. Garcia Oca, G. Gonzalez-Doncel, and D. G. Morris, “Mircostructural evolution of dilute Al-Mg alloys during processing by equal channel angular pressing and during subsequent annealing”, Material Science & Engineering, vol.375-377, 2004, pp.853-856.
21. Vladivoj Ocenasek, and Margarita Slamova, “Resistence to recrystallization due to Sc and Zr addition to Al-Mg alloys”, Materials Characterization, vol.47, 2001,pp.157-162.
22. Emmanuelle. A. Marquis, and David. N. Seidman, “Microstructure evolution of Al3Sc precipitates by three-dimensional atom-probe microscopy”, Materials science and engineering department, Northwestern University, Evanston, IL, pp.60208-3108, USA.
23. V. M. Segal, V. I. Reznikov, A. E. Drobyshevskiy and V. I. Kopylov, “Russian Metallurgy”, Engl. Transl., vol.1, 1981, pp.115.
24. J. Richert, and M. Richert, “Aluminum”, vol.62, 1986, pp.604.
25. M. Mabuchi, H. Iwasaki, K. Yanase and K. Higashi, “Scripta Materialia”, vol.36, 1997, pp.681-686.
26. M. Mabuchi, K. Ameyama, H. Iwasaki and K. Higashi, “Acta Materialia”, vol.47, 1999, pp.2047-2057.
27. W. H. Haung, L. Chang, P. W. Kao and C. P. Chang, “Materials Science and Engineering”, A307, 2001, pp.113-118.
28. V. M. Segal, “USSR Patent”, No.575892, 1977.
29. Y. Iwahashi, J. Wang, Z. Horita, M. Nemoto, and T. G. Langdon, “Scripta Materialia”, vol.35, 1996, pp.143-146.
30. A. Shan, I. G. Moon, H. S. Ko, and J. W. Park, “Scripta Materialia”, vol.41, 1999, pp.353-357.
31. Y. Wu, and I. Baker, “Scripta Materialia”, vol.37, 1997, pp.437-442.
32. H. S. Kim, “Materials Science and Engineering”, A315, 2001, pp.122-128.
33. M. Furukawa, Z. Horita, M. Nemoto, and T. G. Langdon, “The Minerals, Metals & Materials Society”, Warrendale, PA, 2000, pp.125.
34. M. Furukawa, Y. Iwahashi, Z. Horita, M. Nemoto, and T. G. Langdon, “Materials Science and Engineering”, A257, 1998, pp.328-332.
35. Y. Iwahashi, Z. Horita, M. Nemoto, and T. G. Langdon, “Acta Materialia”, vol.46, 1998, pp.3317-3331.
36. K. Oh-ishi, Z. Horita, M. Furukawa, M. Nemoto, and T. G. Langdon, “Metall.Trans.”, A29, 1998, pp.2245.
37. 葉均蔚, “鎂及鋁合金之超塑性成形”, 工業材料雜誌, 174期, 90年6月, pp.102-112.
38. R. Verma, P. A. Friedman, A. K. Ghosh, C. Kim, and S. Km, “Characterization of superplastic deformation behavior of a fine grain 5083 Al alloy sheet”, Metallurgical and Materials Transactions, 1996, pp.1889.
39. R. Verma, P. A. Friedman, A. K. Ghosh, C. Kim, and S. Kim, “Superplastic forming characteristics of fine-grained aluminum”, J. Mater. Sci. Eng, 1995, pp.543.
40. “Applications of Scandium In Al-Sc Alloys”, http://www.scandium.org/Sc-Al.html.