| 研究生: |
賴柏均 Bo-Chun LAi |
|---|---|
| 論文名稱: |
空時區塊編碼之相差空間調變的解碼演算法 Decoding Algorithms for Space-Time Block coded Differential Spatial Modulation |
| 指導教授: |
魏瑞益
Ruey-Yi Wei |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 通訊工程學系 Department of Communication Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 50 |
| 中文關鍵詞: | 空時區塊碼 、相差空間調變 、頻譜效率 、低複雜度檢測 |
| 外文關鍵詞: | space-time block coding, Differential Spatial Modulation, spectral efficiency, low-complexity detection. |
| 相關次數: | 點閱:48 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文針對具空時區塊編碼之相差空間調變系統進行低複雜度解碼器設計與效能分析。首先,針對具空時排列的空時區塊編碼之相差空間調變架構中因排列組合導致之計量運算爆炸問題,提出一種以子計量預先計算與查表重構為基礎之低複雜度最大可能性偵測法。該方法可重複利用相同子矩陣之距離資訊,顯著降低實數乘法次數,並保有與原始偵測器相近之錯誤率表現。
接著,針對進一步提高解碼靈活性與降低記憶體需求,本論文設計一套應用
Fano演算法之序列解碼架構,結合動態門檻控制與節點資訊遞傳機制,能有效進行路徑搜尋與回溯,避免完整遍歷整張籬柵圖。模擬結果驗證,所提解碼器可在中高訊雜比下維持穩定效能,並大幅減少複雜度與資源使用,展現其於高天線數與受限裝置中之實作潛力。
This thesis investigates low-complexity decoder designs for space-time block coded differential spatial modulation (STBC-DSM) systems. A submetric-based maximum-likelihood detection method is proposed to reduce the high computational complexity caused by spatial-temporal permutation, achieving significant complexity reduction while maintaining near-optimal error performance.
To further reduce memory usage and improve decoding flexibility, a Fano algorithm-based sequential decoder is developed. By employing dynamic threshold control and recursive state tracking, the decoder avoids full trellis traversal and adapts to channel conditions.
[1] R. Mesleh, H. Haas, S. Sinanovic, C. Ahn, and S. Yun, “Spatial modulation,” IEEE Trans. Veh. Technol., vol. 57, no. 4, pp. 2228–2242, Jul. 2008.
[2] J. Jeganathan, A. Ghrayeb, and L. Szczecinski, “Spatial modulation: Optimal detection and performance analysis,” IEEE Commun. Lett., vol. 12,no. 8, pp. 545–547, Aug. 2008.
[3] Y. Bian, X. Cheng, M. Wen, L. Yang, H. V. Poor, and B. Jiao,“Differential spatial modulation,” IEEE Trans. Veh. Technol., vol. 64,no. 7, pp. 3262-3268, Jul. 2015.
[4] N. Ishikawa and S. Sugiura, “Unified differential spatial modulation,” IEEE Wireless Commun. Lett., vol. 3, no. 4, pp. 337-340, Aug. 2014.
[5] R. Y. Wei and T. Y. Lin, “Low-complexity differential spatial modulation,” IEEE Wireless Commun. Lett., vol. 8, no. 2, pp. 356-359, Apr. 2019.
[6] R. Y. Wei and C. W. Chang, “A low-complexity soft-output detector for differential spatial modulation,” IEEE Wireless Commun. Lett., vol. 11, no. 5, pp. 1077-1081, May 2022.
[7] L. Yang, H. Xiu, D. Yu, P. Gao, and G. Yue, “Reordered amplitude phase shift keying aided differential spatial modulation: DFDD-based lowcomplexity detector and performance analysis over fading channels,” IEEE Trans. Wireless Commun., vol. 21, no. 10, pp. 7913-7925, Oct. 2022.
[8] M. Alshawaqfeh, A. Gharaibeh, and R. Mesleh, “Tree-search-based optimal and suboptimal low complexity detectors for differential space shift keying MIMO system,” IEEE Trans. Wireless Commun., vol. 22, no. 3, pp. 19801991, Mar. 2023.
[9] H. Xiu, D. Yu, P. Gao, and L. Yang, “An enhanced system model for differential spatial modulation system under fast fading channels and a corresponding DFDD based low-complexity detector,” IEEE Trans. Veh. Technol., vol. 73, no. 2, pp. 2227-2235, Feb. 2024.
[10] R. Y. Wei and C. Y. Chen, “Low-complexity maximum-likelihood detectors incorporatingpre-calculated symbol metrics for differential spatial modulation,” IEEE Wireless Commun. Lett., vol. 14, no. 4, pp. 1124-1128, Apr. 2025.
[11] L. Xiao, Y. Xiao, P. Yang, J. Jiu, S. Li, and W. Xiang, “Space-time block coded differential spatial modulation,” IEEE Trans. Veh. Technol. , vol. 66, no. 10, pp. 8821-8834, Oct. 2017.
[12] A. G. Helmy, M. D. Renzo, and N. Al-Dhahir, “Differential spatially modulated space-time block codes with temporal permutations,” IEEE Trans. Veh. Technol., vol. 66, no. 8, pp. 7548-7552, Aug. 2017.
[13] H. Xiu, L. Yang, D. Yu, P. Gao, Z. Li, Q. Song, and G. Yue, “A DFDD based detector for space-time block coded differential spatial modulation under time-selective channels,” IEEE Commun. Lett., vol. 26, no. 2, Feb. 2022.
[14] Y. Yang, X. Q. Jiang, Y. Wu, and S. Mumtaz, “Low-complexity detectors for space-time block coded differential spatial modulation,” IEEE Trans. Veh. Technol., vol. 73, no. 8, p. 12231-12236, Aug. 2024.
[15] H, Zhang, S. Yang, C. Wu, Y. Xiao, and M. Xiao, “Amplitude phase shift keying-aided space-time block coded differential spatial nodulation,” in Proc. ICC. 2024.
[16] R. Y. Wei, S. L. Chen, Y. H. Lin, and B. C. Chen, “Bandwidth-efficient generalized differential spatial modulation,” IEEE Trans. Veh. Technol. , vol. 72, no. 1, pp. 601-610, Jan. 2023.
[17] R. Y. Wei, S. L. Chen, Y. H. Lin, and B. C. Chen, “Corrections to “Bandwidth-efficient generalized differential spatial modulation”,” IEEE Trans. Veh. Technol., vol. 73, no. 2, p. 3005, Feb. 2024.
[18] S. M. Alamouti, “A simple transmitter diversity scheme for wireless communications,” IEEE J. Select. Areas Commun., vol. 16, pp. 1451- 1458, Oct. 1998.
[19] B. L. Hughes, “Differential space-time modulation,” IEEE Trans. Inform. Theory, vol. 46, pp. 2567-2578, Nov. 2000.[20] B. M. Hochwald and W. Swelden, “Differential unitary space-time modulation,” IEEE Trans. Commun., vol. 48, pp. 2041-2052, Dec. 2000.
[21] R. Y. Wei, “Differential encoding by a look-up table for quadratureamplitude modulation,” IEEE Trans. Commun., vol. 59, no. 1, pp. 84-94, Jan. 2011.
[22] R. Y. Wei and L. T. Chen, “Further results on differential encoding by a table,” IEEE Trans. Commun., vol. 60, no. 9, pp. 2580-2590, Sep. 2012.
[23] V. Tarokh, N. Seshadri and A. R. Calderbank, “Space-time codes for high data rate wireless communication: Performance criterion and code construction,” IEEE Trans. Inform. Theory, vol. 44, pp. 744-765, Mar. 1998.
[24] S. Lin and D. J. Costello Jr, Error Control Coding: Fundamentals and Applications. Englewood Cliffs, NJ: Prentice-Hall, 1983.
[25] 陳君易 , “具空時排列之空時區塊編碼的相差空間調變 ” 國立中央大學通訊工程研究所,碩士論文, 六月. 2024.