跳到主要內容

簡易檢索 / 詳目顯示

研究生: 賴柏均
Bo-Chun LAi
論文名稱: 空時區塊編碼之相差空間調變的解碼演算法
Decoding Algorithms for Space-Time Block coded Differential Spatial Modulation
指導教授: 魏瑞益
Ruey-Yi Wei
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 通訊工程學系
Department of Communication Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 50
中文關鍵詞: 空時區塊碼相差空間調變頻譜效率低複雜度檢測
外文關鍵詞: space-time block coding, Differential Spatial Modulation, spectral efficiency, low-complexity detection.
相關次數: 點閱:48下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文針對具空時區塊編碼之相差空間調變系統進行低複雜度解碼器設計與效能分析。首先,針對具空時排列的空時區塊編碼之相差空間調變架構中因排列組合導致之計量運算爆炸問題,提出一種以子計量預先計算與查表重構為基礎之低複雜度最大可能性偵測法。該方法可重複利用相同子矩陣之距離資訊,顯著降低實數乘法次數,並保有與原始偵測器相近之錯誤率表現。
    接著,針對進一步提高解碼靈活性與降低記憶體需求,本論文設計一套應用
    Fano演算法之序列解碼架構,結合動態門檻控制與節點資訊遞傳機制,能有效進行路徑搜尋與回溯,避免完整遍歷整張籬柵圖。模擬結果驗證,所提解碼器可在中高訊雜比下維持穩定效能,並大幅減少複雜度與資源使用,展現其於高天線數與受限裝置中之實作潛力。


    This thesis investigates low-complexity decoder designs for space-time block coded differential spatial modulation (STBC-DSM) systems. A submetric-based maximum-likelihood detection method is proposed to reduce the high computational complexity caused by spatial-temporal permutation, achieving significant complexity reduction while maintaining near-optimal error performance.
    To further reduce memory usage and improve decoding flexibility, a Fano algorithm-based sequential decoder is developed. By employing dynamic threshold control and recursive state tracking, the decoder avoids full trellis traversal and adapts to channel conditions.

    摘要 IV Abstract V 致謝 VI 目錄 VIII 圖目錄 X 表目錄 XI 第一章 緒論 1 1.1 背景與研究動機 1 第二章 相關背景回顧 5 2.1 具時間排列的空時區塊編碼之相差空間調變 5 2.1.1 傳送端架構 5 2.1.2 原始最大可能性檢測 8 2.2 具空時排列的空時區塊編碼之相差空間調變 10 2.2.1 STBC-DSM-JSTP的傳送端架構 10 2.2.2 STBC-DSM-JSTP的接收端架構 12 2.2.3 使用儲存S ̃(t-1)可能值的籬柵圖進行檢測 14 第三章 簡化計量運算之最大可能性檢測 16 3.1 為BE-GDSM所提出的低複雜度最大可能性檢測 16 3.2 針對STBC-GDSM-JSTP所提出的低複雜度最大可能性檢測 18 3.3 模擬結果 20 第四章 空時排列的區塊編碼之相差空間調變之序列解碼器設計 23 4.1 序列解碼方法的節點結構 23 4.2 序列解碼演算法 25 4.3 模擬結果 29 第五章 結論 35 參考文獻 37

    [1] R. Mesleh, H. Haas, S. Sinanovic, C. Ahn, and S. Yun, “Spatial modulation,” IEEE Trans. Veh. Technol., vol. 57, no. 4, pp. 2228–2242, Jul. 2008.
    [2] J. Jeganathan, A. Ghrayeb, and L. Szczecinski, “Spatial modulation: Optimal detection and performance analysis,” IEEE Commun. Lett., vol. 12,no. 8, pp. 545–547, Aug. 2008.
    [3] Y. Bian, X. Cheng, M. Wen, L. Yang, H. V. Poor, and B. Jiao,“Differential spatial modulation,” IEEE Trans. Veh. Technol., vol. 64,no. 7, pp. 3262-3268, Jul. 2015.
    [4] N. Ishikawa and S. Sugiura, “Unified differential spatial modulation,” IEEE Wireless Commun. Lett., vol. 3, no. 4, pp. 337-340, Aug. 2014.
    [5] R. Y. Wei and T. Y. Lin, “Low-complexity differential spatial modulation,” IEEE Wireless Commun. Lett., vol. 8, no. 2, pp. 356-359, Apr. 2019.
    [6] R. Y. Wei and C. W. Chang, “A low-complexity soft-output detector for differential spatial modulation,” IEEE Wireless Commun. Lett., vol. 11, no. 5, pp. 1077-1081, May 2022.
    [7] L. Yang, H. Xiu, D. Yu, P. Gao, and G. Yue, “Reordered amplitude phase shift keying aided differential spatial modulation: DFDD-based lowcomplexity detector and performance analysis over fading channels,” IEEE Trans. Wireless Commun., vol. 21, no. 10, pp. 7913-7925, Oct. 2022.
    [8] M. Alshawaqfeh, A. Gharaibeh, and R. Mesleh, “Tree-search-based optimal and suboptimal low complexity detectors for differential space shift keying MIMO system,” IEEE Trans. Wireless Commun., vol. 22, no. 3, pp. 19801991, Mar. 2023.
    [9] H. Xiu, D. Yu, P. Gao, and L. Yang, “An enhanced system model for differential spatial modulation system under fast fading channels and a corresponding DFDD based low-complexity detector,” IEEE Trans. Veh. Technol., vol. 73, no. 2, pp. 2227-2235, Feb. 2024.
    [10] R. Y. Wei and C. Y. Chen, “Low-complexity maximum-likelihood detectors incorporatingpre-calculated symbol metrics for differential spatial modulation,” IEEE Wireless Commun. Lett., vol. 14, no. 4, pp. 1124-1128, Apr. 2025.
    [11] L. Xiao, Y. Xiao, P. Yang, J. Jiu, S. Li, and W. Xiang, “Space-time block coded differential spatial modulation,” IEEE Trans. Veh. Technol. , vol. 66, no. 10, pp. 8821-8834, Oct. 2017.
    [12] A. G. Helmy, M. D. Renzo, and N. Al-Dhahir, “Differential spatially modulated space-time block codes with temporal permutations,” IEEE Trans. Veh. Technol., vol. 66, no. 8, pp. 7548-7552, Aug. 2017.
    [13] H. Xiu, L. Yang, D. Yu, P. Gao, Z. Li, Q. Song, and G. Yue, “A DFDD based detector for space-time block coded differential spatial modulation under time-selective channels,” IEEE Commun. Lett., vol. 26, no. 2, Feb. 2022.
    [14] Y. Yang, X. Q. Jiang, Y. Wu, and S. Mumtaz, “Low-complexity detectors for space-time block coded differential spatial modulation,” IEEE Trans. Veh. Technol., vol. 73, no. 8, p. 12231-12236, Aug. 2024.
    [15] H, Zhang, S. Yang, C. Wu, Y. Xiao, and M. Xiao, “Amplitude phase shift keying-aided space-time block coded differential spatial nodulation,” in Proc. ICC. 2024.
    [16] R. Y. Wei, S. L. Chen, Y. H. Lin, and B. C. Chen, “Bandwidth-efficient generalized differential spatial modulation,” IEEE Trans. Veh. Technol. , vol. 72, no. 1, pp. 601-610, Jan. 2023.
    [17] R. Y. Wei, S. L. Chen, Y. H. Lin, and B. C. Chen, “Corrections to “Bandwidth-efficient generalized differential spatial modulation”,” IEEE Trans. Veh. Technol., vol. 73, no. 2, p. 3005, Feb. 2024.
    [18] S. M. Alamouti, “A simple transmitter diversity scheme for wireless communications,” IEEE J. Select. Areas Commun., vol. 16, pp. 1451- 1458, Oct. 1998.
    [19] B. L. Hughes, “Differential space-time modulation,” IEEE Trans. Inform. Theory, vol. 46, pp. 2567-2578, Nov. 2000.[20] B. M. Hochwald and W. Swelden, “Differential unitary space-time modulation,” IEEE Trans. Commun., vol. 48, pp. 2041-2052, Dec. 2000.
    [21] R. Y. Wei, “Differential encoding by a look-up table for quadratureamplitude modulation,” IEEE Trans. Commun., vol. 59, no. 1, pp. 84-94, Jan. 2011.
    [22] R. Y. Wei and L. T. Chen, “Further results on differential encoding by a table,” IEEE Trans. Commun., vol. 60, no. 9, pp. 2580-2590, Sep. 2012.
    [23] V. Tarokh, N. Seshadri and A. R. Calderbank, “Space-time codes for high data rate wireless communication: Performance criterion and code construction,” IEEE Trans. Inform. Theory, vol. 44, pp. 744-765, Mar. 1998.
    [24] S. Lin and D. J. Costello Jr, Error Control Coding: Fundamentals and Applications. Englewood Cliffs, NJ: Prentice-Hall, 1983.
    [25] 陳君易 , “具空時排列之空時區塊編碼的相差空間調變 ” 國立中央大學通訊工程研究所,碩士論文, 六月. 2024.

    QR CODE
    :::