| 研究生: |
陳柏丞 Bo-Cheng Chen |
|---|---|
| 論文名稱: |
非(微)晶矽薄膜太陽能電池之能隙結構研究 Research on the bandgap engineering of micromorph silicon thin-film solar cells |
| 指導教授: |
陳昇暉
Sheng-Hui Chen 李正中 Cheng-Chung Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 69 |
| 中文關鍵詞: | 薄膜太陽能電池 、能隙結構 、AMPS-1D |
| 外文關鍵詞: | bandgap engineering, silicon thin-film solar cells, AMPS-1D |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究重點為了拓展矽薄膜太陽能電池對太陽光頻譜的吸收,因此在單一p-i-n的結構下,於本質層中堆疊非晶矽與不同結晶率的微晶矽,利用模擬軟體AMPS-1D有系統地探討不同的堆疊對太陽光吸收的響應。
研究結果顯示:一、在只有單一本質層的矽薄膜太陽能電池中,本質層的材料會影響最佳效率的是厚度;當使用結晶率越高的微晶矽薄膜,其需要更大的厚度才可以達到最佳的效率;二、本質層以雙層堆疊時,若要有效的增加太陽的光萃取,非晶矽與微晶矽其材料厚度與排列方式對於頻譜響應有很大的影響;三、在固定厚度下,雙層結構中以”微晶矽–非晶矽”的堆疊結構對於光吸收有較好的表現,而這樣的結構中也擁有較高的短路電流 (Jsc) 與填充因子 (FF)。當結構為微晶矽–非晶矽的排列,厚度各為單位厚度的4倍,則效率最高可以達到11.1%。
The thesis aims on the improvement of the efficiency of the silicon thin-film solar cell by better extraction of solar spectrum. We have analyzed the influence of the spectral response using AMPS-1D simulator by stacking amorphous silicon and microcrystalline silicon with different crystalline volume fraction of the intrinsic layer in p-i-n structure.
The thesis reveals the following results: first, the optimized thickness of the intrinsic layer is related to the crystalline volume fraction of the microcrystalline silicon. The thickness of an i-layer with a higher crystalline volume fraction must be thicker to obtain higher efficiency. Second, when the intrinsic layer was constructed by two layers, an amorphous layer and a microcrystalline layer, the spectral response of the device is influenced by both layer thickness and arrangement. Third, for a fixed thickness, the layer structure of the "microcrystalline silicon – amorphous silicon" is better for extraction of solar spectrum. The structure also features the highest Jsc and FF with 90% crystalline volume fraction of the microcrystalline silicon and amorphous silicon stack. The conversion efficiency can reach 11.1% .
[1] 太陽輻射光譜圖. Available: http://rredc.nrel.gov/solar/spectra/
[2] 楊德仁,《太陽電池材料》,化學工業出版社,北京,2006。
[3] 顧鴻壽,《太陽能電池元件導論:材料、元件、製程、系統》,全威圖書出版社,台北,2008。
[4] A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N.Wyrsch, U. Kroll, C. Droz, and J. Bailat, "Thin-film Silicon Solar Cell Technology," Progress in Photovoltaics: Research and Applications 12, 113-142 (2004).
[5] D. E. Carlson and C. R. Wronski, "Amorphous silicon solar cell," Applied Physics Letters 28(11), 671-673 (1976).
[6] Y. Hamakawa, H. Okamoto, and Y. Nitta, "A new type of amorphous silicon photovoltaic cell generating more than 2.0 V " Applied Physics Letters 35(2), 187-189 (1979).
[7] D. L. Staebler and C. R. Wronski, "Reversible conductivity changes in discharge‐produced amorphous Si " Applied Physics Letters 31(4), 292-294 (1977).
[8] N. F. Mott and E. A. Davis, Electronic processes in non-crystalline materials (Clarendon Press, Oxford, 1971).
[9] K. Prasad, F. Finger, S. Dubail, A. Shah, and M. Schubert, "Deposition of phosphorus doped microcrystalline silicon below 70 °C at 70 MHz " Journal of Non-Crystalline Solids 137-138(Part 2), 681-684 (1991).
[10] S. Vepřek and V. Mareček, "The preparation of thin layers of Ge and Si by chemical hydrogen plasma transport " Solid-State Electronics 11(7), 683-684 (1968).
[11] S. Kirkpatrick, "Percolation and Conduction," Reviews of Modern Physics 45(4), 574-588 (1973).
[12] J. Kočkaa, A. Vetushkaa, and A. Fejfara, "Some controversial points related to transport in microcrystalline silicon," Philosophical Magazine 89(28-30), 2557-2571 (2009).
[13] D. Azulay, I. Balberg, V. Chu, J. P. Conde, and O. Millo, "Current routes in hydrogenated microcrystalline silicon," Physical Review B 71(11), 113304 (2005).
[14] M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, "Solar cell efficiency tables (version 37)," Progress in Photovolatics: Researc and Appications 19(1), 84–92 (2011).
[15] H. Y. Hao, G. L. Kong, X. B. Zeng, Y. Xu, H. W. Diao, and X. B. Liao, "Transition films from amphous to microcrystalline silicon and solar cells," Acta Physica Sinica 54(7), 3327-3331 (2005).
[16] K. Y. Chana, D. Knippa, A. Gordijnb, and H. Stiebigb, "Influence of crystalline volume fraction on the performance of high mobility microcrystalline silicon thin-film transistors," Journal of Non-Crystalline Solids 354(19-25), 2505-2508 (2008).
[17] H. Keppner, J. Meier, P. Torres, D. Fischer, and A. Shah, "Microcrystalline silicon andmicromorph tandemsolar cells," Applied Physics A: Materials Science & Processing 69(2), 169-177 (1999).
[18] J. Müller, B. Rech, J. Springer, and M. Vanecek, "TCO and light trapping in silicon thin film solar cells," Solar Energy 77(6), 917-930 (2004).
[19] D. Zhou and R. Biswas, "Photonic crystal enhanced light-trapping in thin film solar cells," Journal of Applied Physics 103(9), 093102-1–5 (2008).
[20] S. Guha, J. Yang, A. Pawlikiewicz, T. Glatfelter, R. Ross, and S. R. Ovshinsky, "Band-gap profiling for improving the efficiency of amorphous silicon alloy solar cells," Applied Physics Letters 54(23), 2330-2332 (1989).
[21] J. Zimmer, H. Stiebig, and H. Wagner, "a-SiGe:H based solar cells with graded absorption layer," Journal of Applied Physics 84(1), 611-617 (1998).
[22] R. J. Zambranoa, F. A. Rubinellib, W. M. Arnoldbikc, J. K. Rath, and R. E. I. Schroppa, "Computer-aided band gap engineering and experimental verification of amorphous silicon–germanium solar cells," Solar Energy Material and Solar Cells 81(1), 73-86 (2004).
[23] O. Lundberg, M. Edoff, and L. Stolt, "The effect of Ga-grading in CIGS thin film solar cells," Thin Solid Films 480-481, 520-525 (2005).
[24] M. Gloeckler and J. R. Sites, "Band-gap grading in Cu(In,Ga)Se2 solar cells " Journal of Physics and Chemistry of Solids 66(11), 1891–1894 (2005).
[25] B. Rech and H. Wagner, "Potential of amorphous silicon for solar cells " Applied Physics A: Materials Science & Processing 69(2), 155-167 (1999).
[26] 張庭維,《以定光電流量測之吸收係數分析矽薄膜缺陷密度之研究》,碩士論文,中央大學光電科學與工程學系,民99年10月。
[27] S. J. Fonash, Solar Cell Device Physics.(Academic Press, New York, 2010).
[28] D. A. Neamen, Semiconductor Physics and Devices : basic principles.(MyGraw-Hill, New York, 2003).
[29] T. Tiedje, J. M. Cebulka, D. L. Morel, and B. Abeles, "Evidence for Exponential Band Tails in Amorphous Silicon Hydride," Physical Review Letters 46 (21), 1425-1428 (1981).
[30] R. S. Crandall, "Band-Tail Absorption in Hydrogenated Amorphous Silicon," Physical Review Letters 44(11), 749-752 (1980).
[31] S. Aljishi, J. D. Cohen, S. Jin, and L. Ley, "Band tails in hydrogenated amorphous silicon and silicon-germanium alloys," Physical Review Letters 64(23), 2811-2814 (1990).
[32] R. A. Street, Hydrogenated Amorphous Silicon.(Cambridge, New York, 1991).
[33] M. Vaněčeka, J. Kočkaa, J. Stuchlíka, Z. Kožíšeka, O. Štikaa, and A. Třískaa, "Density of the gap states in undoped and doped glow discharge a-Si:H " Solar Energy Materials 8(4), 411-423 (1983).
[34] M. Vaněček, A. Abrahám, O. Štika, J. Stuchlík, and J. Kočka, "Gap states density in a-Si:H deduced from subgap optical absorption measurement on Schottky solar cells," Physica Status Solidi (a) 83(2), 671-623 (1984).
[35] J. Tauc, Amorphous and Liquid Semiconductors.(Plenum Publishing Corporation, New York, 1974).
[36] H. Fritzsche, Amorphous Silicon and Related Materials vol. A.(World Scientific, Singapore, 1989).
[37] J. I. Pankvoe, Optical Processes in Semiconductors.(Dover, New York, 1971).
[38] S. Sherman, S. Wagner, and R. A. Gottscho, "Correlation between the valence‐ and conductio - band-tail energies in hydrogenated amphous silicon," Applied Physics Letters 69(21), 3242-3244 (1996).
[39] K. Shimakawa, "Electronic and optical properties of hydrogenated microcrystalline silicon: review " Journal of Materials Science: Materials in Electronics 15(2), 63-67 (2004).
[40] G. A. Niklasson, C. G. Granqvist, and O. Hunderi, "Effective medium models for the optical properties of inhomogeneous materials," Applied Optics 20(1), 26-30 (1981).
[41] W. Y. Cho and K. S. Lim, "A Simple Optical Properties Modeling of Microcrystalline Silicon for the Energy Conversion Application by the Effective Medium Approximation Method," Japanese Journal of Applied Physics 36, 1094-1098 (1997).
[42] M. Burgelman, J. Verschraegen, S. Degrave, and P. Nollet, "Modeling Thin-film PV Devices," Progress in Photovoltaics: Research and Applications 12(2-3), 145-153 (2004).
[43] S. Tripathi and R. O. Dusane, "AMPS-1D simulation studies of electronic transport in n+-uc-Si:H thin films," Journal of Non-Crystalline Solids 352(9-20), 1105-1108 (2006).
[44] M. I. Kabir, Z. Ibrahim, K. Sopianb, and N. Amin, "Effect of structural variations in amorphous silicon based single and multi-junction solar cells from numerical analysis " Solar Energy Materials and Solar Cells 94(9), 1542-1545 (2010).
[45] AMPS-1D. Available: http://www.ampsmodeling.org/default.htm
[46] 單晶矽材料光學常數. Available: http://www.virginiasemi.com/
[47] M. Vaněčeka, J. Stuchlíka, J. Kočkaa, and A. Třískaa, "Determination of the mobility gap in amorphous silicon from a low temperature photoconductivity measurement " Journal of Non-Crystalline Solids 77-78, 299-302 (1985).
[48] S. Hiza, A. Yamada, and M. Konagai, "Characterization of Defects-Location in Hydrogenated Microcrystalline Silicon Thin Films and Its Influence on Solar Cell Performance," Japanese Journal of Applied Physics 47, 6222-6227 (2008).
[49] G. Ambrosonea, U. Cosciaa, R. Murrib, N. Pintob, M. Ficcadentib, and L. Morresib, "Structural, optical and electrical characterizations of μc-Si:H films deposited by PECVD," Solar Energy Material and Solar Cells 87(1-4), 375-386 (2005).
[50] 韓嘉緯,《以射頻磁控濺鍍方式鍍製含氫微晶矽薄膜並探討其應用於薄膜太陽能電池之可能性》,碩士論文,中央大學光電科學與工程學系,民96年7月。
[51] M. I. Kabir, Z. Ibrahim, K. Sopianb, and N. Amin, "Effect of structural variations in amorphous silicon based single and multi-junction solar cells from numerical analysis " Solar Energy Material and Solar Cells 94(9), 1542-1545 (2010).
[52] F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, "Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells," Applied Physics Letters 96(3), 033133-1–3 (2010).