跳到主要內容

簡易檢索 / 詳目顯示

研究生: 曹博淞
Bo-song, Cao
論文名稱: 臺灣認購權證市場之Delta避險策略-以Jarrow and Rudd 模型
The Delta- Hedging Strategy Test of Jarrow and Rudd’s Approximate Option Valuation Formula in Taiwan Warrant Market
指導教授: 吳庭斌
Wu Ting Pin
口試委員:
學位類別: 碩士
Master
系所名稱: 管理學院 - 財務金融學系
Department of Finance
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 40
中文關鍵詞: 認購權證Delta避險策略Jarrow and Rudd模型
外文關鍵詞: Warrant, Delta-Hedging Strategy, Jarrow and Rudd Model
相關次數: 點閱:6下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於臺灣認購權證市場近年來蓬勃發展,券商在發行認購權證時必須建構一個避險比例來鎖定發行成本,一般券商在進行Delta避險策略時,大多以廣為人知的Black and Scholes模型作為基礎,本文針對目前市場上交易最為熱絡的臺灣加權股價選擇權進行探討,認為Black and Scholes模型過度簡化的假設對於避險成本有著相當大的影響,並且引入Jarrow and Rudd模型作為比較基礎,結果顯示,使用Jarrow and Rudd模型可以讓Black and Scholes模型所導致的微笑曲線較為平坦,亦表示無論選擇權証在價內、外程度為何皆可以得到較穩定的避險成本,對券商在評估避險成本上有著較佳的結果。


    In the recent years, the warrant market in Taiwan is highly developed. Securities firms have to construct a hedge ratio to lock their cost at issuing the warrants. In general, securities firms use the delta-hedging strategy basis on the Black and Scholes model which is broadly used to evaluate the option price. This paper discusses the Taiwan weighted stock option which is the warmest product in current market and mainly examines that the Black and Scholes model is overly simplified assumptions for the costs of hedging has a very big impact, and the introduction of the Jarrow and Rudd model as a basis for comparison. Empirical results show that calculating the volatility by the Jarrow and Rudd model will let the volatility smile become flatter than the Black and Scholes. In other words, Securities firms will get a stable hedging cost no matter the issuing warrant is in-the-money, at-the-money or out-of-the-money. That is a better result for issuing firms to evaluating the hedging cost.

    目錄 一、緒論 1 1-1研究動機 1 1-2研究目的 1 1-3論文架構 2 二、文獻回顧 3 2-1權證介紹 4 2-2 Black-Scholes模型 7 2-3 Jarrow and Rudd 模型 10 2-4文獻回顧 12 三、研究架構與方法 17 3-1研究架構 17 3-2指數現貨避險 19 3-3指數期貨避險 20 3-4研究方法 24 四、實證結果與分析 25 4-1指數現貨避險結果 25 4-2指數期貨避險結果 32 五、結論與建議 37 5-1結論 37 5-2研究建議 38 5-3參考文獻 39

    1. 許明廉(2000),指數型認購權證之delta避險研究,國立臺灣大學商學研究所碩士論文
    2. 張傳章(2004),期貨與選擇權,雙葉書廊有限公司
    3. Corrado, C.J. and Su, T. (1996): Skewness and kurtosis in S&P 500 Index returns implied by option prices, J. Financial Research, 19(2), 175–192.
    4. Whaley, R.E. (1982): Valuation of American call options on dividend paying stocks, The Journal of Financial Economics, 10(1), 29–58.
    5. Merton, R.C. (1973): The theory of rational option pricing, The Bell Journal of Economics and Management Science, 4(1), 141–83.
    6. Corrado, C.J. and Su, T. (1996): S&P500 Index option tests of Jarrow and Rudd’s approximate option valuation formula. The Journal of Futures Markets, 16(6), 611-629
    7. Corrado, C.J. and Su, T. (1997): Implied volatility skews and stock index skewness and kurtosis implied by S&P 500 index option prices, The Journal of Derivatives, 4(4) , 8-19
    8. Corrado, C.J. and Su, T. (1997): Implied volatility skews and stock return skewness and kurtosis implied by stock option prices, The European Journal of Finance, 3(1) , 73-85
    9. Brown and Robinson (2002): Skewness and kurtosis implied by option prices: A correction , The Journal of Financial Research, 25(2) , 279-282
    10. Fillo and Rosenfeld (2004):Testing option pricing with the Edgeworth expansion , Physica A: Statistical Mechanics and its Applications, 344(3), 484-490
    11. Hull, J.C.(2012): Options, Futures, and Other Derivatives 8th edition,
    12. Jarrow, R and Rudd, A (1982): Approximate option valuation for arbitrary stochastic processes, Journal of Financial Economics, 10(3), 347-369

    QR CODE
    :::