跳到主要內容

簡易檢索 / 詳目顯示

研究生: 鄭祺萱
Chi-Hsuan Cheng
論文名稱: 鎳鈷矽化物及鎳鈷矽鍺化物薄膜之特性探討
The characteristics of NiCo thin film on Si and SiGe substrates
指導教授: 辛正倫
Cheng-Lun Hsin
李佩雯
Pei-Wen Li
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 31
中文關鍵詞: 鎳鈷矽鍺金屬矽化物
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出使用鎳鈷合金NiCo ( Co 10 at.% )當作互補式金屬氧化物半導體( CMOS )之汲極與源極的金屬連結材料,藉由濺鍍法沉積NiCo在矽或矽鍺基材上,再經由快速熱退火形成鎳鈷矽化物( NiCo silicide )或鎳鈷矽鍺化物( NiCo germanosilicide )去探討其材料特性。使用材料分析儀器包含:四點探針、掃描式電子顯微鏡、掃描式穿透式電子顯微鏡、能量散佈分析儀及低掠角X射線繞射分析儀。在此論文中也針對先前所廣泛使用的鎳矽化物( Ni silicide )、鎳矽鍺化物( Ni germanosilicide )、鎳鉑矽化物( NiPt silicide )、鎳鉑矽鍺化物( NiPt germanosilicide )與本論文所提出的NiCo silicide和NiCo germanosilicide去比較其材料特性差異。以熱穩定性來說,NiCo silicide能穩定至900℃,NiCo germanosilicide能穩定至600℃。由於Co的加入,可以使得NiCo在高溫依然可以得到相較於一般Ni silicide低的片電阻值,歸因於低溫相CoSi所造成的結果。在最後也探討了不同鍺濃度的矽鍺基材之NiCo germanosilicide的片電阻值變化與表面形貌變化。
    本文所探討的鎳鈷合金的材料特性,對於金屬連接材料的選擇,提供了特性更好的選擇性,往後有利於微縮電晶體尺寸時所可以使用的材料。


    NiCo (10 at.% of Co) alloy was employed for the formation of the metal silicide and germanosilicide as the contact layer for future CMOS source/drain. The resistivity and structure evolution of NiCo silicide and germanosilicide were investigated, and the performance of the NiCo silicide is better than conventional NiSi and compatible with NiPt silicides, not with the NiPt germanosilicide yet. The thermal stability and enhanced sheet resistance of NiCo silicide and germanosilicide were found to be up to 900℃ and 600℃, respectively. The low sheet resistance was attributed to the low-temperature CoSi by enhancing the high temperature thermal stability and uniformity of the Ge. The influence of Ge concentration was studied in different Si1-xGex substrates, and the low sheet resistance can be reliable up to 650 ℃.

    摘要.............................................i Abstrate........................................ii 目 錄..........................................iii 圖表目錄..........................................v 第一章 簡介.......................................1 1-1 前言.........................................1 1-2金屬矽化物.....................................1 1-2-1 金屬矽化物生成方式............................1 1-2-2 金屬矽化物成長機制............................2 1-2-3 金屬矽化物種類...............................2 1-3 自我校準金屬矽化物之製程.........................4 1-4 研究動機......................................4 第二章 鎳鈷矽化物與鎳鈷矽鍺化物之製作與量測方法..........8 2-1 實驗流程......................................8 2-2 製程設計細節...................................8 2-2-1鎳金屬和鎳鈷合金濺鍍與退火製程...................8 2-2-2 鎳金屬與鉑金屬之蒸鍍與退火製程..................9 2-2-3穿透式電子式顯微鏡之試片製作(表面式)..............9 第三章 鎳鈷矽化物與鎳鈷矽鍺化物之探討..................11 3-1 前言.........................................11 3-2 結果與討論....................................11 3-2-1 四點探針電性分析.............................11 3-2-2 SEM形貌分析.................................12 3-2-3 TEM微結構分析...............................13 3-2-4 TEM繞射圖形之相位分析.........................13 3-2-5 EDS元素分佈分析..............................14 3-2-6 GID-XRD相位分析.............................14 3-2-7 不同鍺濃度之矽鍺基板之四點探針電性分析與SEM形貌分析.15 3-3 結論..........................................15 第四章 總結與未來展望................................28 參考文獻...........................................29

    [1] L. J. Chen,“Silicide technology for integrated circuits,”Institute of Elec. Eng., London, (1998).
    [2] H. Iwai, T. Ohguro, and S. I. Ohmi,“NiSi silicide technology for scaled CMOS, ”Microelectronics Eng., 60, 157 (2002).
    [3] Properties of metal silicides, edited by K. Maex and M. Van. Rossum (Inspec, 1995).
    [4] M. A. Nicolet and S. S. Lau, in chapter 6, “Formation and characterization of transition metal silicides,”VLSI electronics microstructure science, edited by N. G. Einspruch and G. B. Larrabee, Academic press, (1983).
    [5] E. H. Rhoderick and R. H. William,“Metal-semiconductor contact,”in Monographs in electrical and electronic engineering, Oxford, U. K, Clarendon, (1988).
    [6] F. M. d’Heurle,“Silicide interfaces in silicon technology,”J.Electron. Mater., 27, 1138 (1998).
    [7] S. S. Lau, J. W Mayer, and K. N. Tu,“Interactions in the Co/Si thin-film system. I. Kinetics,”J. Appl. Phys., 49(7), 4005 (1978).
    [8] F. M. Heurle and C. S. Petersson,“Formation of thin films of CoSi2: Nucleation and diffusion mechanisms,”Thin Solid Films, 128, 283 (1985).
    [9] D. B. Aldrich, Y. L. Chen, D. E. Sayers, R. J. Nemanich, S. P. Ashburn, and M. C. Öztürk, “Stability of C54 Titanium Germanosilicide on a Silicon-Germanium Alloy Substrate”, J. Appl. Phys. 77 (1995) 5107-5114.
    [10] Y. W. Ok, S. H. Kim, Y. J. Song, K. H. Shim, and T. Y. Seong, “Structural Properties of Nickel Silicided Si1−xGex(001) Layers”, Semicond. Sci. Technol. 19 (2004) 285-290.
    [11] P. T. Goeller, B. I. Boyanov, D. E. Sayers, R. J. Nemanich, A. F. Myers, and E. B. Steel, “Germanium Segregation in the Co/SiGe/Si(001) Thin Film System”, J. Mater. Res. 14 (1999) 4372-4384.
    [12] Tze Ping, A. C. (2008). A useful etchant to create cavitations of cobalt salicide layer in a cross-sectioned sample. Semiconductor Electronics, 2008. ICSE 2008. IEEE International Conference on.
    [13] Jin, L. J., et al. (2005). "Effect of Pt on agglomeration and Ge out diffusion in Ni(Pt) germanosilicide." Journal of Applied Physics 98(3): 033520-033520-033526.
    [14] Demeulemeester, J., et al. (2013). "On the growth kinetics of Ni(Pt) silicide thin films." Journal of Applied Physics 113(16): 8.
    [15] Futase, T., et al. (2011). "Uniform, Low-Resistive Ni-Pt Silicide Fabricated by Partial Conversion With Low Metal-Consumption Ratio." Semiconductor Manufacturing, IEEE Transactions on 24(4): 545-551.
    [16] Hoummada, K., et al. (2009). "Effect of Pt addition on Ni silicide formation at low temperature: Growth, redistribution, and solubility." Journal of Applied Physics 106(6): 063511-063511-063519.
    [17] Van Bockstael, C., et al. (2008). "Effect of Pt addition on growth stress and thermal stress of NiSi films." Journal of Applied Physics 104(5): 053510-053510-053517.
    [18] R.N. Wange, et al. Applied Surface Science 207 (2003) 139-143.
    [19] Baklanov, M. R., et al. (1996). "Kinetics and mechanism of the etching of CoSi2 in HF-based solutions." Journal of the Electrochemical Society 143(10): 3245-3251.
    [20] Law, Y. T., et al. (2011). "Surface oxidation of NiCo alloy: A comparative X-ray photoelectron spectroscopy study in a wide pressure range." Applied Surface Science 258(4): 1480-1487.
    [21] Lee, J. B., et al. (2010). "Improved electrical and thermal properties of nickel silicides by using a NiCo interlayer." Superlattices and Microstructures 47(2): 259-265.
    [22] Zaima, S., et al. (2008). "Silicide and germanide technology for contacts and gates in MOSFET applications." Thin Solid Films 517(1): 80-83.
    [23] De Keyser, K., et al. (2010). "Phase formation and thermal stability of ultrathin nickel-silicides on Si(100)." Applied Physics Letters 96(17): 3.
    [24] Chi, D. Z., et al. (2007). "Addressing materials and integration issues for NiSi silicide contact metallization in nano-scale CMOS devices." Thin Solid Films 515(22): 8102-8108.
    [25] Houlet, L. F., et al. (2008). "Electrode contact study for SiGe thin film operated at high temperature." Applied Surface Science 254(16): 4999-5006.
    [26] Deng, F., et al. (1997). "Salicidation process using NiSi and its device application." Journal of Applied Physics 81(12): 8047-8051.
    [27] Xu, Y.-J., et al. (2009). "Pt interlayer effects on Ni germanosilicide formation and contact properties." Applied Surface Science 256(1): 305-310.

    QR CODE
    :::