| 研究生: |
徐珩 Heng XU |
|---|---|
| 論文名稱: | Electrodeposited Nickel Hydroxide Nanoflakes for Supercapacitor Applications |
| 指導教授: |
李勝偉
Sheng-wei Lee Aurélien BRUYANT Aurélien BRUYANT |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學與工程研究所 Graduate Institute of Materials Science & Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 47 |
| 中文關鍵詞: | 超級電容 、氫氧化鎳 、摻雜銀 、脈衝電流 |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
此論文的主要目的是研究以氫氧化鎳為活性物質的超電容製備方法,電化學性能量測,電化學反應前後氫氧化鎳活性物質的相態變化以及通過摻雜銀的方法來提高此種超電容的電化學性能的研究。
以氫氧化鎳活性物质為基礎的超電容主要通過電化學沉積的方法來製備,恆電流電化學沉積和脈衝電流電化學沉積兩種不同的通電方式分別被用來製備氫氧化鎳超電容活性物質用以比較其產物的電化學性能;不同通電方法所製備的氫氧化鎳活性物質的奈米結構是通過掃描電子顯微鏡來比較;電化學測量前後活性物質的相變化主要是通過拉曼光譜儀來檢測;活性物質中銀摻雜的濃度以及顆粒大小是通過改變銀的前驅溶液來實現的。
實電結果表明,恆電流電化學沉積與脈衝電流電化學沉積會影響氫氧化鎳的奈米結構:恆電流所沉積的氫氧化鎳主要是片狀結構;脈衝電流沉積得到的氫氧化鎳主要呈現毛細結構。在沒有銀摻雜的情況下,這二種方法得到的氫氧化鎳超电容,由於其電導性不良,電化學性能與理論值具有較大差異,只達到了氫氧化鎳理論比電容的28.77%和11.60 %。通過拉曼光譜儀的檢測,在電化學反應前後,活性物質從氫氧化鎳轉變為了氧化鎳。在摻雜銀之後,這兩種通電方式製成的氫氧化鎳超電容電化學性能都得到了極大提升,分別達到了理論值的77.66%和79.77%。其中由脈衝電流沉積的銀摻雜氫氧化鎳超電容,銀摻雜的顆粒直徑在5奈米到10奈米之間。
Supercapacitors (also called electrochemical capacitors or ultracapacitors) have attracted great interest in recent years because they offer a balanced energy density and power density that bridge the gap between batteries and conventional capacitors [1]. Based on the different energy storage mechanisms, supercapacitors can be generally categorized as electrical double-layer capacitors (EDLCs) and pseudocapacitors. The nickel (II) hydroxide is one of the most used metal oxide supercapacitors active materials.
The object of this work is synthesizing nickel hydroxide based supercapacitors, studying its phase transformations after electrochemical reactions and increasing its specific capacitance by add silver particles inside.
The nickel hydroxide based supercapacitors were fabricated by electrochemical deposition (electrodeposition) with constant current and pulse current. The surface morphologies of the nickel hydroxide were characterized by emission scanning electron microscope at 20 kV. The particle size of silver was measured by transmission electron microscope at 200 kV. The phase transformations of nickel hydroxide were examined by Raman spectroscopy using green laser with a wavelength of 537 nm. The electrochemical measurements were carried out in a standard three-electrode cell by an electrochemical workstation.
This work consisted of bibliographies studies about this subject; The synthesis of nickel hydroxide nanoflakes; The surface morphology studies and the phase transformations studies.
[1] Simon, P and Gogotsi, Y. Material for electrochemical capacitors, Nat Mater 2008;7: 845-854.
[2] H. Ashassi-Sorkhabi, P. La’le Badakhshan, E. Asghari, Electrodeposition of three dimensional-porous Ni/Ni(OH)2 hierarchical nano composite via etching the Ni/Zn/Ni(OH)2 precursor as a high performance pseudocapacitor, Chemical Engineering Journal 299 (2016) 282-291.
[3] I-Hsiang lo, Jun-Yi Wang, Kuo-Yen Huang, Jin-Hua Huang, Weng P.Kang, Synthesis of Ni(OH)2 Nanoflakes on ZnO nanowires by pulse electrodeposition for high-performance supercapacitors, Journal of Power Sources 308 (2016) 29-36.
[4] B. E. Conway. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, (1999) 1-8.
[5] Marin S. Halper, James C. Ellenbogen. Supercapacitors: A Brief Overview (2006)
[6] E. Frackowiak, F. Beguin. Carbon Materials For The Electrochemical Storage Of Energy In Capacitors. CARBON 39 (2001) 937–950.
[7] W.-C. Fang, O. Chyan, C.-L. Sun, C.-T. Wu, C.-P. Chen, K.-H. Chen, L.-C. Chen, J.-H. Huang, Arrayed CNXNT-RuO2 Nanocomposited Directly Grown on Ti-buffered Si Substrate for Supercapacitor Applications, Electrochem. Commun. 9 (2007) 239-244.
[8] E. Frackowiak, K. Jurewicz, S. Delpeux, F. Béguin. Nanotubular Materials For Supercapacitors, Journal of Power Sources 97–98 (2001) 822–825.
[9] C.-C. Hu, K.-H. Chang, M.-C. Lin, Y.-T. Wu, Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitor, Nano Lett. 6 (2006) 2690-2695.
[10] J. Yan, E. Khoo, A. Sumboja, P.S. Lee, Facile Coating of Manganese Oxide on Tin Oxide Nanowires with High-Performance Capacitive Behavior, ACS Nano 4 (2010) 4247-4255.
[11] X.-H. Xia, J.-P. Tu, X.-L. Wang, C.-D. Gu, X.-B. Zhao, J. Mater, Hierarchically porous NiO film grown by chemical bath deposition via a colloidal crystal template as an electrochemical pseudocapacitor material. Chem. 21 (2011) 671-679.
[12] Z. Lu, Z. Chang, W. Zhu, X. Sun, Beta-phased Ni(OH)2 nanowall film with reversible capacitance higher than theoretical Faradic capacitance, Chem. Commun. 47 (2011) 9651-9653.
[13] Chen, J.; Bradhurst, D.H.; Dou, S.X.; Liu, H.K. Nickel Hydroxide as an Active Material for the Positive Electrode in Rechargeable Alkaline Batteries, J. Electrochem. 146 (1999) 3606–3612.
[14] Oliva, P.; Leonardi, J.; Laurent, J.F, Review of the structure and the electrochemistry of nickel hydroxides and oxy-hydroxides, Journal of Power Sources. 8 (1982) 229–255.
[15] Jeevanandam, P., Koltypin, Y., Gedanken, A., Synthesis of Nanosized α-Nickel Hydroxide by a Sonochemical Method, Nano Letters. 1 (2001) 263–266.
[16] David S. Hall, David J. Lockwood, Shawn Poirier, Christina Bock, and Barry R. MacDougall, Applications of in situ Raman spectroscopy for identifying nickel hydroxide materials and surface layers during chemical aging, ACS Appl. Mater. Interface 6 (2014) 3141-3149.
[17] D.-S. Kong, J.-M. Wang, H.-B. Shao, J.-Q. Zhang, C.-N. Cao, Electrochemical fabrication of a porous nanostructured nickel hydroxide film electrode with superior pseudocapacitive performance, Journal of alloys and compounds, 509 (2011) 5611-5616
[18] Gardiner, D.J., Practical Raman spectroscopy, Springer-Verlag. (1989) ISBN 978-0-387-50254-0.
[19] D. A. Corrigan, R. M. Bendert, Effect of Coprecipitated Metal Ions on the Electrochemistry of Nickel Hydroxide Thin Films: Cyclic Voltammetry in 1M KOH, Journal of Electrochemical Society., 136 (1989) 723-728
[20] G. Fu, Z. Hu, L. Xie, X. Jin, Y. Xie, Y.Wang, Z. Zhang, Y. Yang, H. Wu, Electrodeposition of Nickel Hydroxide Films on Nickel Foil and Its Electrochemical Performances for Supercapacitor, Journal of Electrochemical Society, 4 (2009) 1052-1062
[21] A. D. McNaught, A. Wilkinson, Compendium of Chemical Terminology, 2nd edition, IUPAC, (1997)
[22] M.S. Chandrasekar, M. Pushpavanam, Pulse and pulse reverse plating—Conceptual, advantages and applications, Electrochim. Acta 53 (2008) 3313-3322
[23] C.-C. Hu, C.-Y. Cheng, Anodic deposition of nickel oxides for the nickel-based batteries, Journal of Power Source 111 (2002) 137-144
[24] N. Mironova-Ulmane, A. Kuzmin, I. Steins, J. Grabis, I. Sildos, and M. Pärs, Raman scattering in nanosized nickel oxide NiO, J. Phys.Conf. Ser. 93, (2007).
[25] Maciej M. Electrochemical prepared silver nanoflakes and nanowires, Electrochemical communication, 6 (2004) 400-403
[26] Joseph Goldstein (2003). Scanning Electron Microscopy and X-Ray Microanalysis. Springer. ISBN 978-0-306-47292-3