| 研究生: |
張忠勝 Chung-Sheng Chang |
|---|---|
| 論文名稱: |
鋰離子電池LiNi1/3Co1/3Mn1/3O2陰極材料之製程開發與改質研究 Synthesis and surface treatment of LiNi1/3Co1/3Mn1/3O2cathode materials for Li-ion batteries |
| 指導教授: |
費定國
George Ting-Kuo Fey |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 189 |
| 中文關鍵詞: | 陰極材料 、塗佈改質 、LiNi1/3Co1/3Mn1/3O2 、鋰離子電池 |
| 外文關鍵詞: | surface coating, cathode, Lithium-ion battery, LiNi1/3Co1/3Mn1/3O2 |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
於本論文中,為達到縮短製程時間、減少合成費用,並製備高性能之LiNi1/3Co1/3Mn1/3O2 陰極材料,吾人分別以溶液燃燒法和微波處理法進行此材料之製程開發,經由改變各重要合成變因,尋找最佳製程條件。隨後,以機械式熱處理法,嘗試利用不同氧化物,將兩方法最佳製程的陰極材料進行塗佈改質,期能改善材料於高充電電壓下之循環穩定性,並提升其熱安定性與承受高速率充放電的總體能力。
經研究後顯示,吾人所開發的溶液燃燒法和微波處理法,皆僅需傳統共沉澱合成法的三分之ㄧ製程時間,即可獲得品質良好與性能優異的LiNi1/3Co1/3Mn1/3O2 陰極材料。於充放電截止電壓分別為4.6 與2.5 V,充放電速率為0.2 C-rate 的測試條件下,溶液燃燒法與微波處理法之最佳製程陰極材料,可分別獲得179 mAh/g 與184mAh/g 的初始放電電容量。此外,利用不同氧化物,以機械式熱處理法進行表面改質後得知,經由0.50與0.25 wt.% Al2O3 塗佈後,溶液燃燒法與微波處理法所製備之材料可分別由改質前的47 與30 次充放電循環,大幅提升至97 與50 次之多,說明材料經由Al2O3 的塗佈後,藉由Al2O3 緊密包覆於材料外圍,減少電活性物質與電解質液的直接接觸,進而提升了陰極材料之循環穩定性。
相較於傳統共沉澱合成法,吾人以溶液燃燒法和微波處理法,進行LiNi1/3Co1/3Mn1/3O2 之材料製備,兩方法不僅具備快速、方便與經濟的特點,溶液燃燒法與微波處理法更分別具有製程簡單與反應快速之絕對優勢。在未來如此分秒必爭的年代,吾人所開發之製備方式,不僅大幅縮減了製程時間與人物力生產投資成本,亦提高了能源材料於市場應用的絕對競爭力。溶液燃燒法和微波處理法,的確更適用於大量的工業量產上,亦可視為相當具潛力的陰極材料製備方法。
In order to shorten process time, reduce synthesis cost, and prepare high performance cathode materials, layered LiNi1/3Mn1/3Co1/3O2 powders were synthesized by two methods, respectively, one is the solution combustion process with hexamethylenetetramine as a fuel and the other is the microwave method followed by short duration high temperature calcination.
After determining optimal preparation conditions, cathode materials synthesized under these conditions and surface treated separately with different metal oxides to enhance cycle stability using a simple mechano-thermal coating procedure.
The powders prepared by solution combustion and microwave methods generated a discharge capacity of 179 mAh/g and 183 mAh/g, respectively, at a 0.2 C-rate between 4.6 and 2.5 V in the first cycle. The structure and morphology of the bare and the surface modified LiNi1/3Mn1/3Co1/3O2 samples have been characterized with XRD, FE-SEM, DLS, TEM, EDS, and DSC techniques.
Electrochemical studies revealed that both methods needed only a third of the process time to synthesize a LiNi1/3Mn1/3Co1/3O2 cathode compared to a conventional co-precipitation route. After surface modification, all the
LiNi1/3Mn1/3Co1/3O2 powders coated with Al2O3 have showed improved cyclabiliy, indicating that coating materials can stabilize the cathode structure by suppressing characteristic structural phase transitions. Moreover, the
mechano-thermal coating process is a simple, inexpensive, environmentally benign and commercially viable for producing high-cycling LiNi1/3Mn1/3Co1/3O2 cathode materials.
01.鄭伃君, 零組件雜誌, 10, 33 (2004).
02.科報網, http://www.stdaily.com/big5/zoujin863/2005-07/26/content_414108.htm
03.J. Thomas, Nature Material, 2, 705 (2003).
04.G. Henriksen, K. Amine, J. Liu, and P. Nelson, Abstract 255, 204th Meeting of The Electrochemical Society, Orlando, 12–16 October (2003).
05.Sony lithium ion battery performance summary, JEC Batt. Newsletter, 2, 31 (1994).
06.X. Luoa, X. Wang, L. Liao, S. Gamboab, and P. J. Sebastian, J. Power Sources, 158, 654 (2006).
07.Z. Lu, D. D. MacNeil, and J. R. Dahn, Elecrtrochem. Solid State Lett., 4, A200 (2001).
08.D. D. MacNeil, Z. Lu, and J. R. Dahn, J. Electrochem. Soc., 149, A1332 (2002).
09.S. Jouanneau, D. D. MacNeil, Z. Lu, S. D. Beattie, G. Murphy, and J. R. Dahn, J. Electrochem. Soc., 150, A1299 (2003).
10.T. H. Cho, S. M. Parka, M. Yoshio, T. Hirai, and Y. Hideshima, J. Power Sources, 142, 306 (2005).
11.M. H. Lee, Y. J. Kang, S. T. Myung, and Y. K. Sun, Electrochimica Acta, 50, 939 (2004).
12.K. M. Shaju, G. V. S. Rao, and B. V. R. Chowdari, Electrochimica Acta, 48, 145 (2002).
13.G. T. K. Fey, Z. X. Weng, J. G. Chen, C. Z. Lu, T. P. Kumar, S. P. Naik, A. S. T. Chiang, D. C. Lee, and J. R. Lin, J. Appl. Electrochem., 34, 715 (2004).
14.G. T. K. Fey, C. Z. Lu, J. D. Huang, T. P. Kumar, and Y. C. Chang, J. Power Sources, 146, 65 (2005).
15.張瓊仁 碩士論文, 國立中山大學, 中華民國台灣 (2005).
16.D. Walter and A. V. Schalkwijk, “Lithium Rechargeable Batteries”.
17.李文雄, 科學發展, 362, 32 (2003).
18.J. Hajek, French Patent, 8, 10 (1949).
19.李日琪, 碩士論文, 國立中央大學, 中華民國台灣 (2000).
20.“Battery Recall Update”, Adv. Batt. Technol., 25, 4 (1989).
21.M. Armand, Materials for Advanced Batteries, D.W. Murphy, J. Broadhead and B. C. H. Steele, Plenum Press, New York, p. 145 (1980).
22.K. O. Hever, J. Electrochem. Soc., 115, 826 (1968).
23.B. Pietro, M. Patriarca, and B. Serosati, J. Power Sources, 8, 289 (1982).
24.B. Pietro, M. Patriarea, and B. Scrosati, Synth. Met., 5, 1 (1982).
25.M. Lazzari and B. Scrosati, J. Electrochem. Soc., 127, 773 (1980).
26.S. Morzilli, B. Scrosati, and F. Sgarlata, Electrochim. Acta, 30, 1271 (1985).
27.T. Nagaura and K. Tazawa, Prog. Batt. Solar Cells, 9, 209 (1990).
28.K. Sawai, Y. lwakoshi, and T. Ohzuku, Solid State lonics, 69, 273 (1994).
29.R. Bittihn, R. Herr, and D. Hoge, J. Power Sources, 43-44, 223 (1993).
30.S. Malcus, “Lithium Ionen Batterien in der Automobilindustrie”, (2006).
31.S. H. Park, C. S. Yoon, S. G. Kang, H. S. Kim, S. I. Moon, and Y. K. Sun, Electrochimica Acta, 49, 557 (2004).
32.K. Mizushima, P. C. Jones, P. J. Wiseman, and J. B.Goodenough, Mater.Res. Bull., 15, 783 (1980).
33.Y. S. Horn, L. Croguennec, C. Delmas, E. C. Nelson, and M. A. OKeefe, Nature Materials, 2, 464 (2003).
34.C. Delmas, Mater. Sci. Eng. B3, 97 (1989).
35.S. Levasseur, M. Menetrier, E. Suard, and C. Delmas, Solid State Ionics, 128, 11 (2000).
36.M. Holzapfel, C. Haak, and A. Ott, J. Solid State Chem. 156, 470 (2001).
37.T. Fang, J. G. Duh, and S. R. Sheen, Thin Solid Films, 469-470, 361 (2004).
38.G. T. K. Fey, J. G. Chen, and T. P. Kumar, J. Power Sources, 146, 250 (2005).
39.G. T. K. Fey, Z. F. Wang, C. Z. Lu, and T. P. Kumar, J. Power Sources, 146, 245 (2005).
40.G. T. K. Fey, C. Z. Lu, T. P. Kumar, and Y. C. Chang, Surface & Coatings Technology, 199, 22 (2005).
41.H. Liu, Y. P. Wu, E. Rahm, R. Holze, and H. Q. Wu, J. Solid State Eletrochem., 8, 450 (2004).
42.C. J. Hana, W. S. Eoma, S. M. Lee, W. Il Cho, and H. Jang, J. Power Sources, 144, 214 (2005).
43.H. W. Ha, K. H. Jeong, and K. Kim, J. Power Sources, 161, 606 (2006).
44.K. K. Lee and K. B. Kim, J. Electrochem. Soc., 147, 1709 (2000).
45.Y. Nitta, K. Okamura, K. Haraguchi, S. Kobayashi, and A. Ohta, J. Power Sources, 54, 511 (1995).
46.H. Arai, S. Okada, Y. Sakurai, and J. Yamaki, J. Electrochem. Soc., 144, 3117 (1997).
47.J. N. Reimers, E. Rossen, and C. D. Jones, J. R. Dahn, Solid State Ionics, 61, 335 (1993).
48.http://homepage3.nifty.com/mnakayama/research/research-e.htm
49.H. Berg, H. K. Rundlo, and J. O. Thomas, Solid State Ionics, 144, 65 (2001).
50.B. Deng, H. Nakamura, Q. Zhang, M. Yoshio, and Y. Xia, Electrochimica Acta, 49, 1823 (2004).
51.Y. Shiraishi, I. Nakai, K. Kimoto, and Y. Matsui, J. Power Sources, 97-98, 461 (2001).
52.C. Delmas and I. Saadoune, Solid State Ionics, 53, 370 (1992).
53.G. X. Wang, J. Horvat, D. H. Bradhurst, H. K. Liu, and S. X. Dou, J. Power Sources, 85, 279 (2000).
54.J. Cho, H. Jung, Y. Park, G. Kim, and H. S. Lim, J. Electrochem. Soc., 147, 15 (2000).
55.游文雄, 碩士論文, 國立中央大學, 中華民國台灣 (2000).
56.G. T. K. Fey, V. Subramanian, and J. G. Chen, Materials Letters, 52, 197 (2000).
57.G. V. S. Rao, B. V. R. Chowdari, and H. J. Lindner, J. Power Sources, 97-98, 313 (2001).
58.G. T. K. Fey, J. G. Chen, V. Subramanian, and T. Osaka, J. Power Sources, 112, 384 (2002).
59.H. Liu, J. Li, Z. Zhang, Z. Gong, and Y. Yang, Electrochimica Acta, 49, 1151 (2004).
60.A. D. Epifanio, F. Croce, F. Ronci, V. R. Albertini, E. Traversa, and B. Scrosati, Chem. Mater., 16, 3559 (2004).
61.L. Liu, G. Su, Q. Xiao, Y. Ding, C. Wang, and D. Gao, Mater. Chem. Phys., 100, 236 (2006).
62.C. Wang, X. Ma, J. Cheng, J. Sun, and Y. Zhou, J. Solid State Electrochem., 11, 361 (2007)
63.L. S. Cahill, S. C. Yin, A. Samoson, I. Heinmaa, L. F. Nazar, and G. R. Goward, Chem. Mater., 17, 6560 (2005).
64.R. Stoyanova, E. Zhecheva, and L. Zarkova, Solid State Ionics, 73, 233 (1994).
65.Z. Lu, D. D. MacNeil, and J. R. Dahn, Electrochem. Solid-State Lett., 4, A191 (2001).
66.B. J. Hwang ,R. Santhanam, and S. G. Hu, J. Power Sources, 108, 250 (2002).
67.Z. Liu, A. Yu, and J. Y. Lee, J. Power Sources, 81–82, 416 (1999).
68.M. Yoshio , H. Noguchi , J. Itoh , M. Okada, and T. Mouri, J. Power Sources, 90, 176 (2000).
69.T. Ohzuku and Y. Makimura, Chem. Lett., 30, 642 (2001).
70.I. Belharouak , Y. K. Sunb, J. Liua, and K. Aminea, J. Power Sources, 123, 247 (2001).
71.Y. Chen, G. X. Wang, K. Konstantinov, H. K. Liu, and S. X. Dou, J. Power Sources, 119, 184 (2003).
72.B. J. Hwang, Y. W. Tsai, C. H. Chen, and R. Santhanam, J. Mater. Chem., 13, 1962 (2003).
73.S. Jouanneau, K. W. Eberman, L. J. Krause, and J. R. Dahn, J. Electrochemical Soc., 150, 1637 (2003).
74.Y. K. Sun , S. K. Kang, and K. Amine, Mater. Res. Bull., 39, 819 (2004).
75.J. K. Ngala, N. A. Chernova, M. Ma, M. Mamak, P. Y. Zavalija, and M. S. Whittingham, J. Mater. Chem., 14, 220 (2004).
76.Y. W. Tsai , J. F. Lee , D. G. Liu, and B. J. Hwang, J. Mater. Chem., 14, 958 (2004).
77.D. C. Li, H. Noguchi, and M. Yoshio, Electrochimica Acta, 50, 427 (2004).
78.Y. Sun, C. Ouyang, Z. Wang, X. Huang, and L. Chenz, J. Electrochemical Soc., 151, A504 (2004).
79.N. Tran, L. Croguennec, F. Weill, C. Jordy, P. Biensan, and C. Delmas, Mater. Res. Soc., 835, K10.8.1 (2005).
80.P. Y. Liao, J. G. Duh, and S. R. Sheenb, J. Electrochemical Soc., 152, A1695 (2005).
81.J. Choi and A. Manthiram, Solid State Ionics, 176, 2251 (2005).
82.H. CaoT, Y. Zhang, J. Zhang, and B. Xia, Solid State Ionics, 176, 1207 (2005).
83.H. S. Shin, S. H. Park, Y.C. Bae, and Y. K. Sun, Solid State Ionics, 176, 2577 (2005).
84.N. Trana, L. Croguenneca, C. Jordyb, Ph. Biensanb, and C. Delmasa, Solid State Ionics, 176, 1539 (2005).
85.A. Tang and K. Huang, Mater. Sci. and Engng. B, 122, 115 (2005).
86.J. Jiang, K. W. Eberman, L. J. Krause, and J. R. Dahn, J. Electrochemical Soc., 152, A1874 (2005).
87.J. Li , X. Heb, R. Zhaoa, C. Wan ,C. Jiang , D. Xia, and S. Zhang, J. Power Sources, 158, 524 (2006).
88.D. Li , Y. Sasaki , K. Kobayakawa, and Y Sato, J. Power Sources, 157, 488 (2006).
89.X. Zhang, Z. Wen , X. Yang, X. Xu, and J. Li, Materials Research Bulletin, 41, 662 (2006).
90.G. T. K. Fey, W. Li, and J. R. Dahn, J. Electrochem. Soc., 141, 2279 (1994).
91.W. A. Deer, R. A. Howie, and J. Zussman, “An Introduction to the Rock- Forming Minerals (2nd ed.)”, Longman Scientific & Technical, 558 (1992).
92.G. T. K. Fey, P. Muralidharan, and C. Z. Lu, Materials Letters, 60, 1209 (2006).
93.A. K. Padhi, K.S. Nanjundaswamy, and J.B. Goodenough, J. Electrochem. Soc., 144, 1188(1997).
94.C. Delacourt, P. Poizot, J. M. Transcon, and C. Masoueliern, Nature Materials, 4, 254 (2005).
95.M. M. Doeff, J. D. Wilcox, R. Kostecki, and G. Lau, J. Power Sources, 163, 180 (2006).
96.C. Delacourt, P. Poizot, S. Levasseur, and C. Masquelier, Electrochem. Solid State Lett. 9, A352 (2006).
97.K. S. Park, J. T. Son, H. T. Chung, S. J. Kim, C. H. Lee, K. T. Kang, and H. G. Kim, Solid State Comm., 129, 311 (2004).
98.J. F. Ni, H. H. Zhou, J. T. Chen, and X. X. Zhang, Mater. Lett., 59, 2361 (2005).
99.費定國, “鋰離子電池在電動車市場之展望”, 工業材料雜誌, 229, 141 (2005).
100.N. Yabuuchi and T. Ohzuku, J. Power Sources, 119, 171 (2003).
101.S. H. Na, H. S. Kim, and S. I. Moon, Solid State Ionics, 176, 313 (2005).
102.Y. J. Shin, W. J. Choi, Y. S. Hong, S. Yoon, K. S. Ryu, and S. H. Chang, Solid State Ionics, 177, 515 (2006).
103.S. T. Myung, M. H. Lee, S. Komaba, N. Kumagai, and Y. Kook, Electrochimica Acta, 50, 4800 (2005).
104.M. V. Reddy, G. V. S. Rao, and B.V. R. Chowdari, J. Power Sources, 159, 263 (2006).
105.T. D. Gea, L. Q. Yu, W. N. Ni, T. A. Dong, T. L. Xing, H. K. Long, and J. X. Yang, Materials Chemistry and Physics, 94, 423 (2005).
106.L. Liao, X. Wang, X. Luoa, X. Wang, S. Gamboab, and P. J. Sebastian, J. Power Sources, 160, 657 (2006).
107.S. H. Park, S. W. Oh, and Y. K. Sun, J. Power Sources, 146, 622 (2005).
108.L. Zhang, X. Wang, T. Mutaa, D. Li, H. Noguchi, M. Yoshio, R. Ma, K. Takada, and T. Sasaki, J. Power Sources, 162, 629 (2006).
109.G. G. Amatucci, N. Pereira, T. Zhang, and J. M. Tarascon, J. Power Sources, 81, 39 (2004).
110.N. Yabuuchi and T. Ohzuku, J. Power Sources, 146, 636 (2005).
111.J. Choi and A. Manthiram, Electrochem. Solid-State Lett., 7, A365 (2004).
112.J. Choi and A. Manthiram, Electrochem. Solid-State Lett., 8, C102 (2005).
113.J. Guo, L. F. Jiao, H. T. Yuan , L. Q. Wang, H. X. Li, M. Zhang, and Y. M. Wang, Electrochimica Acta, 51, 6275 (2006).
114.L. Q. Wang, L. F. Jiao, H. T. Yuan, J. Guo, M. Zhao, H. X. Li, and Y. M. Wang, J. Power Sources, 161, 263 (2006).
115.Z. Bakenov and I. Taniguchi, Solid State Ionics, 176, 1027 (2005).
116.S. Patoux and M. M. Doeff, Electrochem. Comm., 6, 767 (2003).
117.S. R. Jain and K. C. Adiga, Combustion and Flame, 40, 71 (1981).
118.卓永達, 碩士論文, 國立中央大學, 中華民國台灣 (2002).
119.G. T. K. Fey, Y. D. Cho, and T. P. Kumar, Mater. Chem. Phys., 99, 451 (2006).
120.K. Deshpande, A. Mukasyan, and A. Varma, J. Am. Ceram. Soc., 86, 1149 (2003).
121.S. T. Aruna and K. S. Rajam, Mater. Res. Bull., 39, 157 (2004).
122.Y. P. Fu, C. H. Lin, Y. H. Su, and S. H. Wu, J. Power Sources, 159, 215 (2006).
123.S. H. Park, S. S. Shin, and Y. K. Sun, Mater. Chem. Phys., 95, 218 (2006).
124.J. Guo, L. F. Jiao, H. T. Yuan, H. X. Li., M. Zhang, and Y. M. Wang, Electrochim. Acta, 51, 3731 (2006).
125.G. T. K. Fey, H. Z. Yang, T. P. Kumar, S. P. Naik, A. S.T. Chiang, D. C. Lee, and J. R. Lin, J. Power Sources, 132,172 (2004).
126.S. T. Myung, K. Izumi, S. Komaba, Y. K. Sun, H. Yashiro, and N. Kumagai, Chem. Mater., 17, 3695 (2005).
127.Y. Kim, H. S. Kim, and S. W. Martin, Electrochimica Acta, 52, 1316 (2006).
128.J. H. Kim, C. S. Yoon, and Y. K. Sun, J. Electrochem. Soc., 150, A538 (2003).
129.J. R. Dahn, U. V. Sacken, and C. A. Michal, Solid State Ionics, 44, 87 (1990).
130.D. C. Li, T. Muta, L. Q. Zhang, M. Yoshio, and H. Noguchi, J. Power Sources, 132, 150 (2004).
131.潘善鵬, 翁漢甫, 機械工業雜誌, 228, 94 (2006).
132.S. B. Jang, S. H. Kang, K. Amine, Y. C. Bae, and Y. K. Sun, Electrochimica Acta, 50, 4168 (2005).
133.Y. K. Sun, S. W. Cho, S. W. Lee, C. S. Yoon, and K. Aminec, J. Electrochem. Soc., 154, A168 (2007).
134.M. H. Kim, H. S. Shin, D. Shin, abd Y. K. Sun, J. Power Sources, 159, 1328 (2006).
135.M. G. Kim, H. J. Shin, J. H. Kim, S. H. Park, and Y. K. Sunb, J. Electrochem. Soc., 152, A1320 (2005).
136.J. M. Kim and H. T. Chung, Electrochim. Acta, 49, 3753 (2004).
137.V. Subramanian, C. L. Chen, H. S. Chou, and G. T. K. Fey, J. Mater. Chem., 11, 3348 (2001).
138.黃晟輔, 碩士論文, 國立中央大學, 中華民國台灣 (2006).
139.物理園, http://www.phy.cuhk.edu.hk/phyworld/articles/microwave/microwave.html
140.S. Yang, H. Yue, Y. Yin, J. Yang, and W. Yang, Electrochimica Acta, 51, 4971 (2006).