跳到主要內容

簡易檢索 / 詳目顯示

研究生: 王玟鑌
Wen-Bin Wang
論文名稱: 多細胞正交分頻多重接取系統下使用部分頻率重複機制之資源配置演算法
Dynamic Resource Allocation in Fractional Frequency Reused Multi-Cell OFDMA Systems
指導教授: 陳永芳
Yung-Fang Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 通訊工程學系
Department of Communication Engineering
畢業學年度: 100
語文別: 英文
論文頁數: 61
中文關鍵詞: 正交分頻多重接取系統資源配置部分頻率重複使用
外文關鍵詞: OFDMA, Fractional Frequency Reused, Resource Allocation
相關次數: 點閱:5下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文提出在部分頻率重複機制下的子載波配置演算法,目標為考慮使用者吞吐量總和最大化與使用者的傳輸需求量,應用在多細胞正交分頻多重接取下鏈系統。因為在多細胞網路中,將會面臨相當嚴重的細胞間干擾,使得服務品質下降,因此我們採用動態部分頻率重複機制,將子載波分為超級群組和普通群組,藉由動態地調整子載波的複用指數來提高訊號對干擾及雜訊比。
    此問題可以分成兩部分來探討: 首先在頻譜配置部分,我們根據提出的配置機制,動態地將子載波分派至超級群組和普通群組。接著在子載波配置部分,我們也根據提出的配置演算法將各個子載波分配給使用者。
    最後由模擬結果得知,我們提出的演算法架構能夠在系統的吞吐量與使用者的傳輸需求量,取得不錯的平衡。


    In this thesis, a frequency allocation scheme is proposed for multi-cell OFDMA systems in downlink, where the objective considers balancing between the maximization of the system throughput and the satisfaction of the user’s minimum data rate requirement. Due to the severe co-channel interference for cellular networks with full frequency reuse, the dynamic fractional frequency reuse scheme is adopted in the cellular network which divides all the subcarriers in each cell into two groups: super and regular groups. The dynamic fractional frequency reuse scheme can guarantee the intra-cell orthogonality and reduce the inter-cell interference. The resource allocation of the dynamic fractional frequency reuse OFDMA cellular networks on downlink transmission can be divided into two parts: frequency partition and subcarrier allocation. First, each subcarrier is assigned to either the super group or the regular group based on the utility variables and the assignment should be reused in all cells. Second, we allocate the subcarrier to users by utilizing the designed functions. The simulation results show that the proposed scheme provides a higher system throughput and improves outage compared with existing schemes.

    論文摘要 -i- Abstract -ii- Contents -iv- List of Figures -vi- List of Tables -vii- Chapter1. Introduction - 1 - 1.1. OFDM System - 1 - 1.2. OFDMA System - 2 - 1.3. Cellular System - 4 - 1.3.1. Frequency Reused System - 4 - 1.3.2. Cellular System with full frequency reuse - 4 - 1.4. Review of Literature - 7 - 1.5. Organization - 10 - Chapter2. System Model and Problem Formulation- 11 - 2.1. FFR OFDMA System Model - 11 - 2.2. Problem Formulation - 15 - Chapter3. Resource Allocation Schemes - 16 - 3.1. Proposed Resource Allocation Scheme - 18 - 3.2. The designed function of subcarrier allocation- 24 - 3.2.1. PFOSA Problem - 24 - 3.2.2. SROSA Problem - 26 - 3.3. Rate Maximization (RM) [18] - 28 - 3.4. Dynamic Subcarrier Assignment (DSA) [14]- 29 - 3.5. Comparison of Resource Allocation Schemes- 30 - Chapter4. Simulation Results - 32 - 4.1. Simulation model - 32 - 4.2. Simulation Results - 33 - Chapter5. Conclusions - 39 - Reference - 40 - Appendix A - 43 - Appendix B - 48 -

    [1] “IEEE standard for local and metropolitan area networks part 16: air interface for fixed and mobile broadband wireless access systems,” IEEE, Tech. Rep. 802.16, Oct. 2004.
    [2] “IEEE standard for local and metropolitan area networks part 16 and amendment 2,” IEEE, Tech. Rep. 802.16e, Feb. 2006.
    [3] “Evolved universal terrestrial radio access (E-UTRA); physical channels and modulation, (release 8), ” 3GPP, Tech. Rep. TS 36.211, Mar. 2008.
    [4] S. Haykin, Communication systems, New York: John Wiley & Sons, Inc., 4th Edition, 2001.
    [5] Luke T. H .Lee, C. J. Chang, Y. S. Chen, and S. Shen, “A utility-approached radio resource allocation algorithm for downlink in OFDMA cellular systems,” IEEE Vehicular Tech. Conf., vol. 3, pp. 1798-1802, May 2005.
    [6] J. Cai, X. Shen, and J. W. Mark, “Downlink resource management for packet transmission in OFDM wireless communication Systems,” IEEE Trans. Wireless Commun., vol. 4, no. 4, July 2005.
    [7] T. S. Rappaport, Wireless communications: principles and practice, New Jersey: Prentice Hall, 1999.
    [8] R. Berezdivin, R. Breinig, and R. Topp, “Next-generation wireless communications concepts and technologies,” IEEE Commun. Mag., vol. 40, pp. 108-116, Mar. 2002.
    [9] G. Foschini, H. Huang, S. Mullender, S. Venkatesan, and H. Viswanathan, “Physical-layer design for next-generation cellular wireless systems, ” Bell Labs Tech. J., vol. 10, no. 2, pp. 157-172, Aug. 2005.
    [10] H. P. Lei, L. Zhang, and D. C. Yang, “A novel multi-cell OFDMA system structure using fractional frequency reuse, ” in Proc. IEEE Int. Symp. on Personal, Indoor and Mobile Radio Commun., pp. 1-5, Sept. 2007.
    [11] M. Assaad, “Optimal fractional frequency reuse (FFR) in multicellular OFDMA system, ” IEEE Vehicular Tech. Conf., pp. 1-5, Sept. 2008.
    [12] N. U. Hassan and M. Assaad, “Optimal fractional frequency reuse (FFR) and resource allocation in multiuser OFDMA system. ” IEEE Int. Conf. on Inf. and Commun. Tech., pp. 88-92, Aug. 2009.
    [13] Z. Xu, G. Y. Li and C. Y. Yang, “Optimal threshold design for FFR schemes in multi-cell OFDMA networks, ” IEEE Int. Conf. on Commun., pp. 1-5, June 2011.
    [14] S. H. Ali and V. C. M. Leung, “Dynamic frequency allocation in fractional frequency reused OFDMA networks,” IEEE Trans. Wireless Commun., vol. 8, no. 8, pp. 486-4295, Aug. 2009.
    [15] NTT DoCoMo, Inc., “Proposals for LTE-Advanced Technologies,” 3GPP TSG-RAN WG1 Contribution, Tech. Rep. R1-082575, June 2008.
    [16] CATT, “Consideration on technologies for LTE-Advanced,” 3GPP TSG-RAN WG1 Contribution, Tech. Rep. R1-082569, June 2008.
    [17] L. Liu, G. Zhu, and D. Wu, “A Novel Fractional Frequency Reuse Structure based on Interference Avoidance Scheme in Multi-Cell LTE Networks,” IEEE Int. ICST Conf. on Commun. and Networking, pp. 551-555, Aug. 2011.
    [18] J. Jang and K. B. Lee, “Transmit power adaptation for multiuser OFDM systems,” IEEE J. Sel. Areas Commun., vol. 21, no. 2, pp. 171-178, Feb. 2003.
    [19] C. Y. Wong, R. S. Cheng, K. B. Letaief, and R. D. Murch, “Multicarrier OFDM with adaptive subcarrier, bit, and power allocation,” IEEE J. Sel. Areas Commun., vol. 17, no. 10, pp. 1747-1758, Oct. 1999.
    [20] I. C. Wong and B. L. Evans, “Adaptive downlink OFDMA resource allocation” in Proc. Asilomar Conf. Signals, Syst. and Comput., pp.2203-2207, Oct. 2008.
    [21] W. Rhee and J. M. Cioffi, “Increase in capacity of multiuser OFDM system using dynamic subchannel allocation,” in Proc. IEEE Vehicular Tech. Conf., vol. 2, pp. 1085-1089, 2000.
    [22] Y. J. Zhang and K. B. Letaief, “Multiuser Adaptive Subcarrier and bit allocation with adaptive cell selection for OFDM systems,” IEEE Trans. Wireless Commun., vol. 3, no.5, pp. 1566-1575, Sept.2004.
    [23] S-E. Elayoubi, O. Ben Haddada, and B. Fourestie, “Performance evaluation of frequency planning schemes in OFDMA-based networks,” IEEE Trans. Wireless Commun., vol. 7, no. 5, pp. 1623-1633, May 2008.
    [24] Y. W. Yu, E. Dutkiewicz, X. J. Huang, M. Mueck and G. F. Fang, “Performance analysis of soft frequency reuse for inter-cell interference coordination in LTE networks,” IEEE Int. Symp. on Commun. and Inf. Tech., pp. 504-509, Oct. 2010.
    [25] A A. Darwish, A. S. Ibrahim, A. H. Badawi, and H. Elgebaly, “Performance improvement of fractional frequency reuse in WiMAX network,” IEEE Vehicular Tech. Conf., pp. 1-5, May 2011.
    [26] Huawei, “Soft frequency reuse scheme for UTRAN LTE,” 3GPP TSG-RAN WG1 Contribution, Tech. Rep. R1-050507, May 2005.
    [27] Huawei, “Further analysis of frequency reuse scheme,” 3GPP TSG-RAN WG1 Contribution, Tech. Rep. R1-050841, Aug.2005.
    [28] Z. Shen, J. G. Andrews, and B. L. Evans, “Adaptive resource allocation in multiuser OFDM systems with proportional rate constraints,” IEEE Trans. Wireless Commun., vol.4, no. 6, pp. 2726-2737, Nov. 2005.
    [29] K. Kumaran and H. Viswanathan, “Joint power and bandwidth allocation in downlink transmission,” IEEE Trans. Wireless Commun., vol. 4, no. 3, pp. 1008-1016, May 2005
    [30] R. B. Santos, F. R. M. Lima, W. C. Freitas, and F. R. P. Cavalcanti, “Qos based radio resurce allocation and scheduling with different user data rate requirements for OFDMA systems, ” in Proc. IEEE Int. Symp. on Personal, Indoor and Mobile Radio Commun., pp. 1-5, Sept. 2007.
    [31] H. Kim and Y. Han, “A proportional fair scheduling for multicarrier transmission systems,” IEEE Commun. Letters, vol. 9, no.3, pp. 210-212, March 2005.
    [32] N. Ruangchaijatupon and Y. JI, “Integrated approach to proportional-fair resource allocation for multiclass services in an OFDMA system,” IEEE Global Telecommun. Conf., pp. 1-6, Nov. 2009.
    [33] K. Seong, M. Mohseni, and J. M. Cioffi, “Optimal resource allocation for OFDMA downlink systems,” in Proc. IEEE Int. Symp. on Inf. Theory, pp. 1394–1398, July 2006.
    [34] W. Yu and J. M. Cioffi, “Constant power water-filling: Performance bound and low-complexity implementation,” IEEE Trans. Commun., vol. 54, no. 1, pp. 23–28, Jan. 2006.

    QR CODE
    :::