| 研究生: |
李韻芝 Yun-chih Lee |
|---|---|
| 論文名稱: |
具微奈米結構之發光二極體及太陽能電池光學特性研究 The Research on Optical Properties of Micro/Nano Structures in Light-emitting diodes and Photovoltaics |
| 指導教授: |
張正陽
Jenq-yang Chang 伍茂仁 Mount-learn Wu |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 畢業學年度: | 97 |
| 語文別: | 英文 |
| 論文頁數: | 112 |
| 中文關鍵詞: | 波導模態共振 、微奈米結構 、發光二極體 、太陽能電池 |
| 外文關鍵詞: | Guided-Mode Resonance, Photovoltaics, Light-emitting diodes, Micro/Nano Structures |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文旨在研究具微奈米結構綠能光電元件之光學特性調控,尤其是氮化鎵發光二極體之光萃取效率提升與光型調變,以及矽薄膜太陽能電池之光捕捉效率改善。第一類研究是藉氮化鎵發光二極體之透明導電膜上進行淺層蝕刻產生微結構,以及進行穿透多重量子井至n型氮化鎵層之微型孔洞深蝕刻,探討兩種不同微陣列結構對氮化鎵發光二極體光萃取效率提升。第二類研究是於氮化鎵發光二極體上製作微透鏡陣列,利用微透鏡陣列調制光子行進方向,呈現空間均勻分佈之出光場型。第三類研究是藉由雙填充因子之非對稱型光柵,以導波模態共振效應,使入射至矽薄膜太陽能電池之光波在結構內產生共振,延長光波光程,來改善矽薄膜太陽能電池之光捕捉效率。
本研究利用有限時域差分法,建立兩種不同光學模型,並用以預測具微奈米結構之發光二極體及太陽能電池的光子行為。在發光二極體的研究,於多重量子井中,以100 nm間距,均勻放置具TE/TM極化且非同時性多重點光源,模擬發光二極體內光子之時間及空間上不同調特性。在太陽能電池的研究,利用具有限空間寬度及時間間隔為10飛秒之平面波,正向入射至具導波模態共振結構之太陽能電池,為太陽能電池內之光子動態行提供一個良好的空間及時間解析度。
本研究採用電子束顯影術,於發光二極體之p型氮化鎵層上製作週期為1.6 ?m微透鏡,以產生空間均勻分佈之出光場型。另外也於發光二極體之p型氮化鎵層製作週期為0.5 ?m之氮化矽微透鏡,以提升其光萃取效率。微奈米結構是以電子束曝寫定義於PMMA光阻上,顯影後,以電感耦合電漿乾蝕刻法,蝕刻微奈米結構於元件內。為了驗證光學模型對光子行為的預測,本研究也自行開發一套之具空間角度解析(解析度達4.4?)之自動化光激發螢光頻譜量測系統。
在發光二極體之出光場型研究,實驗結果證實,在發光角度±50°內,微透鏡結構可使發光二極體的出光強度變化小於10%,產生空間均勻分佈之出光場型。在發光二極體光萃取效率提升研究,穿透多重量子井至n型氮化鎵層之微型孔洞深蝕刻,可提升光萃取效率達25.5%。在太陽能電池的光子補捉效率改善研究,由數值分析結果得知,具導波模態共振效應之雙填充因子非對稱型光柵,可於920 - 1040 nm頻譜範圍內,以及入射光角度在?40?內,提升太陽能電池的光子補捉效率達三倍。
In this dissertation, the manipulation of optical performances using micro/nano structures on green photonic devices is investigated, especially for light-extraction enhancement and light-pattern modulation of III-nitride based light-emitting diodes (LEDs) as well as light-trapping improvement of thin-film silicon (TF-Si) solar cells. Two different micro-arrays are adopted to study the light-extraction enhancement, including the shallow etching of microstructures on the indium–tin-oxide (ITO) p-contact and the deep etching of microholes through the InGaN/GaN multiple-quantum-well (MQW) active structure and down to the n-type GaN layer. An azimuthally isotropic irradiance of GaN-based LEDs with GaN microlens arrays is proposed to demonstrate the concept of light-pattern modulation of LEDs. The spatial resonance of incident lightwave based on guided-mode resonance (GMR) effect is proposed to improve light trapping of TF-Si solar cells by adding a two-filling-factor asymmetric binary grating on cells.
Two different numerical models are developed based on the finite-difference time domain (FDTD) method for predicting the photon behaviors within or outside LEDs and solar cells with micro/nano structures. The non-simultaneous multiple point sources with TE and TM polarizations in the MQW region with an interval of 100 nm are utilized to simulate the non-temporal/non-spatial coherent and unpolarized photons within or escaping from LEDs. For providing a good time and space resolutions in dynamic photon behaviors in solar cells, the normal-incidence and TE-polarized finite-width planar wave with a duration time of 10 femto-seconds is assumed to impinge upon the GMR structures on cells.
To realize microlens arrays on the p-GaN layer of LED chip for azimuthally isotropic irradiance and to construct SiN microlens arrays on GaN-based green LEDs for light-extraction enhancement, intended microlens profiles with a period of 1.6 and 0.5 ?m are defined in PMMA by e-beam lithography. Then, the patterned PMMA is developed in a solution of methylisobutyl ketone and isopropyl alcohol. Finally, a following inductive-coupled plasma (ICP) dry etching process is used to transfer the patterned structure to the specific layers. In order to confirm the numerical prediction of photon behaviors, a home-made automatic angular-resolved photoluminescence (PL) measurement system with an angular resolution of 4.4? is developed.
For spatial light pattern modulation of LEDs, an azimuthally isotropic irradiance with an intensity variation corresponding to the azimuth angles is as low as 10% within the angle region of ±50° is experimentally demonstrated. For light-extraction enhancement of LEDs, the deep etching of microholes through the InGaN/GaN multiple-quantum-well (MQW) active structure and down to the n-type GaN layer realize experimentally an improvement of 25.5%. For light-trapping enhancement of solar cells, simulation results reveal that it is 3-fold enhancement in the light absorption within a spectral range of 920-1040 nm. Moreover, such an enhancement can be maintained even the incident angle of near-IR broadband light wave varies up to ?40?.
[1] S. Macken, I. Lundström, and D. Filippini, “Optical properties of microstructures for computer screen photoassisted experiments,” Appl. Phys. Lett. 89, 254104 (2006).
[2] K. C. Shen, C. Y. Chen, H. L. Chen, C. F. Huang, Y. W. Kiang, C. C. Yang, and Y. J. Yang, “Enhanced and partially polarized output of a light-emitting diode with its InGaN/GaN quantum well coupled with surface plasmons on a metal grating, Appl. Phys. Lett. 93, 231111 (2008).
[3] K. Bao, X. N. Kang, B. Zhang, T. Dai, Y. J. Sun, Q. Fu, G. J. Lian, G. C. Xiong, G. Y. Zhang, and Y. Chen, “Improvement of light extraction from GaN-based thin-film light-emitting diodes by patterning undoped GaN using modified laser lift-off,” Appl. Phys. Lett. 92, 141104 (2008).
[4] S. M. Jeong, F. Araoka, Y. Machida, Y. Takanishi, K. Ishikawa, H. Takezoe, S. Nishimura, and G. Suzaki, “Enhancement of Light Extraction from Organic Light-Emitting Diodes with Two-Dimensional Hexagonally Nanoimprinted Periodic Structures Using Sequential Surface Relief Grating,” Jpn. J. Appl. Phys. Part 1 47, 4566 (2008).
[5] M. Moenster, G. Steinmeyer, R. Iliew, F. Lederer, and K. Petermann, “Analytical relation between effective mode field area and waveguide dispersion in microstructure fibers,” Opt. Lett. 31, 3259 (2006).
[6] B. D. Kong, V. N. Sokolov, K. W. Kim, and R. J. Trew, “Terahertz emission mediated by surface plasmon polaritons in doped semiconductors with surface grating,” J. Appl. Phys. 103, 056101 (2008).
[7] T. K. Gaylord and M. G. Moharam, “Analysis and applications of optical diffraction by gratings,” Proc. SPIE 73, 894 (1985).
[8] F. Llopis and I. Tobias, “Texture profile and aspect ratio influence on the front reflectance of solar cells,” J. Appl. Phys. 100, 124504 (2006).
[9] C. Heine and R. H. Morf, “Submicrometer gratings for solar energy applications,” Appl. Opt. 34, 2476 (1995).
[10] M. Khizar, Z. Y. Fan, K. H. Kim, J. Y. Lin, and H. X. Jiang, "Nitride deep-ultraviolet light-emitting diodes with microlens array" Appl. Phys. Lett. 86, 173504 (2005).
[11] A. David, T. Fuji, R. Sharma, K. McGroddy, S. Nakamura, S. P. DenBaars, E. L. Hu, and C. Weisbuch, "Photonic-crystal GaN light-emitting diodes with tailored guided modes distribution," Appl. Phys. Lett. 88, 061124-1 (2006).
[12] C. L. Hsu, M. L. Wu, Y. C. Liu, Y. C. Lee, J.Y. Chang, “Flattened Broad-Band Notch Filters Using Guided-Mode Resonance Associated with Asymmetric Binary Gratings,” IEEE Photon. Technol. Lett. 18, 2572 (2006).
[13] H. Yan, C. Gu, C. Yang, J. Liu, G. Jin, J. Zhang, L. Hou, and Y. Yao, “Hollow core photonic crystal fiber surface-enhanced Raman probe,” Appl. Phys. Lett. 89, 204101 (2006).
[14] Y. Zhang, C. Shi, C. Gu, L. Seballos, and J. Z. Zhang, “Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering,” Appl. Phys. Lett. 90, 193504 (2007).
[15] F. M. Cox, A. Argyros, M. C. J. Large, and S. Kalluri, “Surface enhanced Raman scattering in a hollow core microstructured optical fiber,”Opt. Express, 15, 13675 (2007).
[16] A. Luque and S. Hegedus, Handbook of Photovoltaic Science and Engineering (Wiley, England, 2003), Chap. 8.
[17] Y. Kawakami, Y. Narukawa, K. Omae, S. Fujita, and S. Nakamura, “Dimensionality of excitons in InGaN-based light emitting devices,” Phys.Status Solidi A 178, 331(2000).
[18] T. Nishida, H. Saito, and N. Kobayashi, “Efficient and high-power AlGaN-based ultraviolet light-emitting diode grown on bulk GaN,” Appl. Phys. Lett. 79, 711 (2001).
[19] E. F. Schubert, Y.-H. Wang, A. Y. Cho, L.-W. Tu, and G. J. Zydzik, “Resonant cavity light-emitting diode,” Appl. Phys. Lett. 60, 921 (1992).
[20] M. R. Krames, M. Ochiai-Holcomb, G. E. Höfler, C. Carter-Coman, E. I. Chen, I.-H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J.-W. Huang, S. A. Stockman, F. A. Kish, M. G. Crawford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, and D. Collins, “High-power truncated-inverted-pyramid (AlxGa1–x)0.5In0.5P /GaP light-emitting diodes exhibiting >50% external quantum efficiency,” Appl. Phys. Lett. 75, 2365 (1999).
[21] W. Schmid, M. Scherer,R. Jäger, P. Stauß, K. Streubel, and K. J. Ebeling, “Efficient light-emitting diodes with radial outcoupling taper at 980 and 630 nm emission wavelength,” Proc. SPIE 4278, 109 (2001).
[22] T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett. 84, 855 (2004).
[23] H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita and M. Yamaguchi, “Light trapping effect of submicron surface textures in crystalline Si solar cells” Prog. Photovoltaics 15, 415 (2007).
[24] C. Haase and H. Stiebig, “Fundamental optical simulations of light trapping in microcrystalline thin-filmsilicon solar cells,” Proc. SPIE 6197, 619705 (2006).
[25] C. H. Chao, S. L. Chung, and T. L. Wu, “Theoretical demonstration of enhancement of light extraction of flip-chip GaN light-emitting diodes with photonic crystals,” Appl. Phys. Lett. 89, 091116 (2006)
[26] Ja-Yeon Kim, Min-Ki Kwon, Ki-Sung Lee, and Seong-Ju Park, “Enhanced light extraction from GaN-based green light-emitting diode with photonic crystal,” Appl. Phys. Lett. 91, 181109 (2007).
[27] H. W. Choi, C. Liu, E. Gu, G. McConnell, J. M. Girkin, I. M. Watson, and M. D. Dawson, “GaN micro-Light Emitting Diode Arrays with Monolithically-integrated Sapphire micro-lenses,” Appl. Phys. Lett. 84, 2253 (2004).
[28] K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Ant. Prop. 14, 302 (1966).
[29] A. Taflove, Computational Electrodynamics the Finite-difference Time-Domain Method, (Artech House, Boston 1995), Chapter 4.
[30] H. Y. Ryu, J. K. Hwang, Y. J.Lee, and Y. H. Lee, “Enhancement of Light Extraction From Two-Dimensional Photonic Crystal Slab Structures,” IEEE J. Quantum Electron. 8, 231 (2002).
[31] C. H. Chao, S. L. Chuang, and T. L. Wu, “Theoretical demonstration of enhancement of light extraction of flip-chip GaN light-emitting diodes with photonic crystals,“ Appl. Phys. Lett. 89, 091116-1 (2006).
[32] D. H. Kim, C. O. Cho, Y. G. Roh, H. Jeon, Y. S. Park, J. Cho, J. S. Im, C. Sone, Y. Park, W. J. Choi, and Q. H. Park, “Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns,” Appl. Phys. Lett. 87, 203508-1 (2005).
[33] T. Mukai, M. Yamada and S. Nakamura, “Characteristics of InGaN-based UV/blue/green/amber/red light-emitting diodes,” Jpn. J. Appl. Phys. 38, 3976 (1999).
[34] T. Mukai, M. Yamada and S. Nakamura, “Current and temperature dependences of electroluminescence of InGaN-based UV/blue/green light-emitting diodes,” Jpn. J. Appl. Phys. 37, 1358 (1998).
[35] S. I. Na, G. Y. Ha, D. S. Han, S. S. Kim, J. Y. Kim, J. H. Lim, D. J. Kim, K. I. Min and S. J. Park, “Selective wet etching of p-GaN for efficient GaN-based light-emitting diodes,” IEEE Photon. Tech. Lett. 18, 1512 (2006).
[36] C. H. Kuo, C. C. Lin, S. J. Chang, Y. P. Hsu, J. M. Tsai, W. C. Lai and P. T. Wang, “Nitride-based light-emitting diodes with p-AlInGaN surface layers,” IEEE Tran. Electron. Dev. 52, 2346 (2005).
[37] H. W. Choi, C. W. Jeon, and M. D. Dawson, “InGaN microring light-emitting diodes,” IEEE Photon. Technol. Lett. 16, 33 (2004).
[38] K. H. Kim, J. Li, S. X. Jin, J. Y. Lin, and H. X. Jiang, “III-nitride ultraviolet light-emitting diodes with delta doping,” Appl. Phys. Lett., 83, 566 (2003).
[39] M. Yamada, T. Mitani, Y. Narukawa, S. Shioji, I. Niki, S. Sonobe, K. Deguchi, M. Sano and T. Mukai, “InGaN-based near-ultraviolet and blue-light-emitting diodes with high external quantum efficiency using a patterned sapphire substrate and a mesh electrode,” Jpn. J Appl. Phys. 41, 1431 (2002).
[40] T. K. Kim, S. H. Kim, S. S. Yang, J. K. Son, K. H. Lee, Y. G. Hong, K. H. Shim, J. W. Yang, K. Y. Lim, S. J. Bae, and G. M. Yang, “GaN-based light-emitting diode with textured indium tin oxide transparent layer coated with Al2O3 powder,” Appl. Phys. Lett. 94, 161107 (2009).
[41] H. Kim, K.-K. Choi, K.-K. Kim, J. Cho, S.-N. Lee, Y. Park, J. S. Kwak, and T.-Y. Seong, "Light-extraction enhancement of vertical-injection GaN-based light-emitting diodes fabricated with highly integrated surface textures," Opt. Lett. 33, 1273 (2008).
[42] Y. G. Ju and B. W. Lee, "Analysis of the Effect of Surface Texture in Light-Emitting Diodes Based on a Finite-Difference-Time-Domain Method,"Jpn. J. Appl. Phys., Part 1 46, 5153 (2007).
[43] T. X. Lee, K.F. Gao, W. T. Chien, and C. C. Sun, "Light extraction analysis of GaN-based light-emitting diodes with surface texture and/or patterned substrate," Opt. Express 15, 6670 (2007).
[44] K. McGroddy, A. David, E. Matioli, M. Iza, S. Nakamura, S. DenBaars, J. S. Speck, C. Weisbuch, and E. L. Hu,"Directional emission control and increased light extraction in GaN photonic crystal light emitting diodes,"Appl. Phys. Lett. 93, 103502 (2008).
[45] K. Orita, S. Tamura, T. Takizawa, T. Ueda, M. Yuri, S. Takigawa and D. Ueda, "High-Extraction-Efficiency Blue Light-Emitting Diode Using Extended-Pitch Photonic Crystal," Jpn. J. Appl. Phys. Part 1 43 5809 (2004).
[46] C. Griffin, E. Gu, H. W. Choi, C. W. Jeon, J. M. Girkin, M. D. Dawson, and G. McConnell,"Beam divergence measurements of InGaN/GaN micro-array light-emitting diodes using confocal microscopy," Appl. Phys. Lett. 86, 041111 (2005).
[47] X. Jin, J. Liang, J. Li, L. Zhao, and W. Wang, "Study on the fabrication of orange micro-LED arrays for display," Proc. SPIE 6030 60300U (2006).
[48] H. Gao, F. Yan, Y. Zhang, J. Li, Y. Zeng, and G. Wang, "Enhancement of the light output power of InGaN/GaN light-emitting diodes grown on pyramidal patterned sapphire substrates in the micro- and nanoscale," J. Appl. Phys. 103 014314 (2008).
[49] T. Wang, K. B. Lee, J. Bai, P. J. Parbrook, R. J. Airey, Q. Wang, G. Hill, F. Ranalli, and A. G. Cullis, "Greatly improved performance of 340 nm light emitting diodes using a very thin GaN interlayer on a high temperature AlN buffer layer," Appl. Phys. Lett. 89, 081126 (2006).
[50] C. F. Shen, S. J. Chang, W. S. Chen, T. K. Ko, C. T. Kuo, and S. C. Shei, “Nitride-Based High-Power Flip-Chip LED With Double-Side Patterned Sapphire Substrate,” IEEE Photon. Technol. Lett. 14, 1668 (2002).
[51] I. Moreno, U. Contreras, “Color distribution from multicolor LED arrays,” Opt. Express 15, 3607 (2007)
[52] A. Borbely and S. G. Johnson, “Performance of phosphor-coated light-emitting diode optics in ray-trace simulations,” Opt. Eng. 44, 111308 (2005).
[53] C. Deller, G. Smith, J. Franklin, “Colour mixing LEDs with short microsphere doped acrylic rods,” Opt. Express 12, 3327 (2004)
[54] I. Moreno, M. A. Alejo, and R. I. Tzonchev, “Designing light-emitting diode arrays for uniform near-field irradiance,” Appl. Opt. 45, 2265 (2006).
[55] I. Moreno, J. Munoz, R. Ivanov, “Uniform illumination of distant targets using a spherical light-emitting diode array,” Opt. Eng. 46, 033001 (2007).
[56] H. T. Hsueh, J. F. T. Wang, C. H .Chao, W. Y. Yeh, C. F. Lai, H. C. Kuo, T. C. Lu, and S. C. Wang, “Azimuthal Anisotropy of Light Extraction from Photonic Crystal Light-emitting Diodes,” in Conference on Lasers and Electro-Optics/Pacific Rim 2007, (Optical Society of America, 2007), paper ThF1_4.
[57] M. D. B. Charlton, M. E. Zoorob, and T. Lee, “Photonic Quasi-Crystal LEDs Design, modeling, and optimization,” Proc. SPIE 6486, 64860R-1 (2007).
[58] J. W. Shi, P. Y. Chen, C. C. Chen, J. K. Sheu, W. C. Lai, Y. C. Lee, P. S. Lee, S. P. Yang, and M. L. Wu, “Linear Cascade GaN Based Green Light Emitting Diodes with Invariant High-Speed/Power Performance under High-Temperature Operation,” IEEE Photon. Technol. Lett. 20, 1896 (2008).
[59] S. S. Wang, R. Magnusson, J. S. Bagby, and M. G. Moharam, “Guided-mode resonances in planar dielectric-layer diffraction gratings,” J. Opt. Soc. Am. A 18, 1470 (1990).
[60] R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett., 61, 1022 (1992).
[61] S. S. Wang and R. Magnusson, Theory and applications of guided-mode resonance filters,” Appl. Opt. 32, 2606 (1993).
[62] R. Magnusson, S. S. Wang, T. D. Black, and A. Sohn, “Resonance properties of dielectric waveguide gratings: theory and experiments at 4-18GHz,” IEEE Trans. on Antennas and Propagation, 42, 567 (1994).
[63] S. S. Wang and R. Magnusson, “Design of waveguide-grating filters with symmetrical line shapes and low sideband,” Opt. Lett. 19, 919 (1994)
[64] R. Magnusson and S. S. Wang, “Optical filter elements based on waveguide gratings,” in Holographics International ’92, Y. N. Denisyuk and F. Wyrowski, eds., Proc. SPIE 1732, 7 (1993).
[65] S. T. Peng, T. Tamir, and H. L. Bertoni, “Theory of periodic waveguides,” IEEE Trans. on Microwave Theory and Techniques, MTT-23, 123 (1975).
[66] D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33, 2038 (1997).
[67] S. Tibuleac and R. Magnusson, “Narrow-linewidth bandpass filter with diffractive thin-film layers,” Opt. Lett. 26, 584 (2001).
[68] S. T. Thurman and G. Michael Morris, “Controlling the Spectral Response in Guided-Mode Resonance Filter Design,” Appl. Opt. 42, 3225 (2003).
[69] D. K. Jacob, S. C. Dunn, and M. G. Morris, “Flat-Top Narrow-Band Spectral Response Obtained from Cascaded Resonant Grating Reflection Filters,” Appl. Opt. 41, 1241 (2002).
[70] C. L. Hsu, Y. C. Liu, C. M. Wang, M. L. Wu, Y. L. Tsai, Y. H. Chou, C. C. Lee, and J. Y. Chang, “Bulk Micromachined Optical Filter Based on Guided-Mode Resonance in Silicon Nitride Membrane,” J. Lightwave Technol. 24, 1922 (2006).
[71] Z. S. Liu and R. Magnusson, “Concept of multiorder multimode resonant optical filters,” IEEE Photonics Technol. Lett. 14, 1091 (2002).
[72] D. L. Brundrett, E. N. Glytsis, and T. K. Gaylord, “Normal-incidence guided-mode resonant grating filters: design and experimental demonstration,” Opt. Lett. 23, 700 (1998).
[73] Carlos F. R. Mateus, Michael C. Y. Huang, Yunfei Deng, Andrew R. Neureuther, and Connie J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photonics Technol. Lett. 16, 518 (2004).
[74] Carlos F. R. Mateus, Michael C. Y. Huang, Lu Chen, Connie J. Chang-Hasnain, and Yuri Suzuki, “Broad-band mirror (1.12-1.62 μm) using a subwavelength grating,” IEEE Photonics Technol. Lett. 16, 1676 (2004).
[75] Y. Ding and R. Magnusson, “Resonant leaky-mode spectral-band engineering and device applications” Opt. Express 12, 5661 (2004)
[76] Zeng. L, Yi. Y, Hong. C, Liu. J., Feng. N, Duan. X, and Kimerling. L, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89, 111111 (2006).
[77] H. Stiebig, M. Schulte, C. Zahren, C. Haase, B. Rech, P. Lechner, “Light trapping in thin-film silicon solar cells by nano-textured interfaces,” Proc. SPIE 6197, 619701 (2006).
[78] J. A. Anna. S, Alan E. D., Sheyu Guo, Yuan-Min Li, “A new light trapping TCO for nc-Si:H solar cells” Sol. Energy Mater. Sol. Cells 90, 3371 (2006).
[79] H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, and M. Yamaguchi, “Light trapping effect of submicron surface textures in crystalline Si solar cells” Prog. Photovolt. Res. Appl. 15, 415 (2007).
[80] F. Llopis, I. Tobias, “The role of rear surface in thin silicon solar cells” Sol. Energy Mater. Sol. Cells 87, 481 (2005).
[81] D. O’Brien,, A. Gomez-Iglesias, M. D. Settle, A. Michaeli, M. Salib, and T. F. Krauss, “Tunable optical delay using photonic crystal heterostructure nanocavities,” Phys. Rev. B 76, 115110 (2007).
[82] C. Li, Z. Dutton, C. Behroozi, and L. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses” Nature 409, 490 (2001).
[83] M. Settle, R. Engelen, M. Salib, A. Michaeli, L. Kuipers, and T. Krauss, “Flatband slow light in photonic crystals featuring spatial pulse compression and terahertz bandwidth,” Opt. Express 15, 219 (2007).
[84] A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide:a proposal and analysis,” Opt. Lett. 24, 711 (1999).
[85] M. L. Wu, Y. C. Lee, C.L. Hsu, Y.-C. Liu, J.Y. Chang, “Experimental and Theoretical Demonstration of Resonant Leaky-Mode in Grating Waveguide Structure with A Flattened Passband,” Jpn. J. Appl. Phys. 46, 5431 (2007).