跳到主要內容

簡易檢索 / 詳目顯示

研究生: 王智玄
Chih-Hsuan Wang
論文名稱: 超音波場下電解水產氫之效應分析
The study on water electrolysis in the presence of ultrasonic field
指導教授: 洪勵吾
Lih-Wu Hong
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 能源工程研究所
Graduate Institute of Energy Engineering
畢業學年度: 99
語文別: 中文
論文頁數: 62
中文關鍵詞: 超音波空蝕現象極化水電解
外文關鍵詞: water electrolysis, polarization, cavitation, ultrasonic field
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氫能為潔淨且能量密度高的燃料,被看好未來能取代石化燃料。電解水製氫是目前較為成熟且產氣純度較高的技術,只是在電解過程會消耗大量的電能。為了節省電力,提升電解效率是當今相當重要的課題。在電解過程中,電極表面會累積大量的氫氣與氧氣氣泡,阻礙離子於電極上之反應。要改善此現象,最常用的方法為攪拌電解液,而超音波產生的空蝕效應也有類似的作用。因此本文將探討不同頻率與強度的超音波對氣阻現象之影響。
    本文實驗所設定之參數為電解液濃度(1M、4M、8M、11M)、電解電位(3V、5V) 、超音波頻率(25kHz、40kHz、68kHz、100kHz)、超音波強度(90W、180W、270W、540W),每次電解時間為600秒,並利用恆電位儀記錄實驗數據,以探討在不同的反應電量在各超音波場下之提升效率。
    結果顯示,在高反應電流下,空蝕效應所引發的微小噴射液滴與高壓滯流環可有效帶走電極表面氣泡,改善氣阻現象。而當空蝕氣泡密度夠高時,其爆破產生的高溫可加速電化學反應速率,並增進其效率。
    在常溫下,電極間距4mm,濃度8M、電位5V,超音波場25kHz、540W有最佳電流提升效率為27%。


    As an energy carrier, hydrogen will play an important role in the future because of its high energy content per unit mass and it is cleaner than the chemical fuels. Today, water electrolysis is a developed technology that generates the purest hydrogen gas. However, it may cause high energy cost. Therefore, energy conservation becomes more and more important and is a major object in many researches. During the process of electrolysis, the electrode plate would be covered by bubbles resulting in the drag of the reactions and high overpotentials at the surface of electrodes. To abate this phenomenon, agitation would be added, and ultrasonic field would offer comparable effect.
    In this study, we will discover the influence of ultrasonic on electrolysis by 4 parameters such as concentration, voltage, frequency, and power. Each electrolysis treatment takes 600 seconds, data recorded by a potentiostat / galvanostat.
    The results of experiment show that in the condition of high current density, micro jet and stagnation flow circular produced by cavitation would remove bubbles on the electrode plate, and lower ohmic polarization effectively. The bulk of explosion of cavitation bubbles close to electrode plate will produce high temperature to accelerate reactive rate, and increase efficiency of chemical reaction.
    Finally, the maximum current density enhancement of the system is about 27%, for concentration 8M, voltage 5V, while an ultrasonic field (25kHz, 540W) is applied.

    目錄 摘要 I ABSTRACT II 目錄 III 表目錄 VI 圖目錄 VII 符號說明 XI 第一章 緒論 1 1-1前言 1 1-2產氫 3 1-3文獻回顧 4 1-4研究目的與動機 6 第二章 理論基礎 8 2-1電解水製氫之基本原理 8 2-2電解電壓 9 2-2-1電解液溫度對電解反應之影響 10 2-3法拉第定律 11 2-4吉布斯自由能 11 2-5極化作用 12 2-5-1濃度極化 12 2-5-2活性極化 13 2-5-3電阻極化 15 2-6電導度 16 2-7超音波的原理 16 2-7-1空蝕現象 17 2-7-2超音波產生空蝕現象之機制 17 2-7-3空蝕氣泡之機制 18 第三章 實驗裝置與步驟 20 3-1實驗簡述 20 3-2實驗藥品及材料 20 3-2-1實驗藥品 20 3-2-2實驗材料 21 3-3實驗儀器 21 3-4實驗架設與變因 22 3-5實驗步驟 23 3-6注意事項 23 第四章 結果與討論 25 4-1實驗參數之探討與設定 25 4-2電解液濃度之影響 27 4-3電場之影響 28 4-4頻率之影響 30 4-5功率之影響 32 第五章 結論與建議 38 5-1結論 38 5-2未來研究方向與建議 38 參考文獻 40 表 44 圖 46

    參考文獻
    1. 行政院國家科學委員會
    http://web1.nsc.gov.tw/ct.aspx?xItem=8008&ctNode=439&mp=1
    2. 毛宗強,氫能-21世紀的綠色能源,新文京開發出版社(2008)。
    3. Western Oregon University
    http://www.wou.edu/las/physci/GS36 /Energy_From_Fossil_Fuels.htm
    4. S. Dunn, “Hydrogen futures: toward a sustainable
    energy system,” Hydrogen Energy, Vol.27, pp. 235-264 (2002).
    5. C. A. Schug, “Operational characterisyics of
    high-pressure, high-efficiency water-hydrogen-electrolysis,” International Journal of Hydrogen Energy, Vol.23,pp.1113-1120(1998).
    6. W. Kreuter and H. Homann , “Electrolysis : The
    important energy transformer in a world of sustainable energy ,” International Journal of Hydrogen Energy, Vol.23,pp.661-666(1998).
    7. P. Ridge, “Hydrogen manufacture by electrolysis, thermal decomposition and unusual techniques,” Noyes Data corporation, New Jersey, M. S. Casper (1978).
    8. R. Mosdale and S. Srinivasan, “Analysis of performance
    and of water and thermal management in proton exchange membrane fuel cells,” Electrochimica Acta,Vol.40,pp.413-421(1995).
    9. P. A. Lheman , C. E. Chmberlin, G. Pauletto and M. A.
    Rocheleau, “Operating experience with a photovoltaic-hydrogen energy system,” International Journal of Hydrogen Energy,Vol.22,pp.465-470(1997).
    10. D. Lj. Stojić, M. P. Marčeta, S. P. Sovilj, and Š. S.
    Miljanić, “Hydrogen generation from water electrolysis
    —possibilities of energy saving,” Journal of Power Sources,Vol.118,pp.315-319(2003).
    11. N. Nagai, M. Takeuchi, T. Kimura, and T. Oka, “Existence of optimum space between electrodes on hydrogen production by water electrolysis,” International Journal of Hydrogen Energy,Vol.28,pp.35-41(2003).
    12. R. F. de Souza, J. C. Padilha, R. S. Gonçalves, and J.
    Rault-Berthelot, “Dialkylimidazolium ionic liquids as
    electrolytes for hydrogen production from water electrolysis,” Electrochemistry Communications,Vol.8,
    pp.211-216(2006).
    13. S. Licht, B. Wang, S. Mukerji, T. Soga, M. Umeno, and
    H. Tributsch, “Over 18% solar energy conversion to
    generation of hydrogen fuel; theory and experiment for efficient solar water splitting,” International Journal of Hydrogen Energy,Vol.26,pp.653-659(2001).
    14. S. Licht, “Solar water splitting to generate hydrogen fuel—a photothermal electrochemical analysis,” International Journal of Hydrogen Energy,Vol.30,
    pp.459-470(2005).
    15. R. L. LeRoy, M. B. I. Janjua, R. Renaud, and U. Leuenberger, “Analysis of time-variation effects in water electrolyzers,” J. Electrochem. Soc., pp.1674-1682(1979).
    16. R. L. LeRoy, and C. T. Bowen, “The thermodynamics of aqueous water electrolysis,” J. Electrochem.,pp.1954-1962(1980).
    17. K. Onda, T. Kyakuno, K. Hattori, and K. Ito,
    “Prediction of production power for high-pressure hydrogen by high-pressure water electrolysis,” Journal of Power Sources,Vol.132,pp.64-70(2004).
    18. S. D. Li, C. C. Wang, C. Y. Chen, “ Water electrolysis
    in the presence of an ultrasonic field,” J. Electrochimica Acta, 54 (2009) 3877–3883
    19. J. Koryta, J. Dvořák, and L. Kavan, Principles of electrochemistry, second edition, John Wiley, New York (1993).
    20. T. J. Mason, J. P. Lorimer and D. J. Walton,
    Sonoelectrochemistry, Ultrasonics : 28 (1990) 333-337.
    21. T. J. Mason, Sonochemistry the uses of ultrasound in
    chemistry, Royal Society of Chemistry, 1990.
    22. 賴耿陽,超音波工學理論實務,復漢出版社(1998)。
    23. R. P. Tong, W. P. Schiffers, S. J. Blake, “Splashing in the collapse of a laser-generated cavity near a rigid boundary,” J.Fluid Mech.: 380 (1999) 3339-361.
    24. J. R. Blake, Y. Tomita, R. P. Tong, “The art craft and science of modelling jet impact in a collapsing cavitation bubble,” Appl. Sci. Res.: 58 (1998) 77-90.
    25. L. A. Crum, “Comments on the evolving field of sonochemistry by a cavitation physicist,” Ultrason. Sonochem.: 2 (2) (1995) 147-152.
    26. K. S. Suslick, S. J. Doktycz and E. B. Flint,“On the
    origin of sonoluminescence and sonochemistry,” Ultrasonics: 28 (1990) 280-290.
    27. J. M. Gras and P. Spiteri , “Corrosion of stainless steels and nickel based alloys for alkaline water electrolysis,” International Journal of Hydrogen Energy,Vol.18,pp.561-566(1993).
    28. L. D. Rozenberg, High intensity ultrasonic fields, Plenum Press, New York,1971.
    29. E. A. Neppiras, “Acoustic cavitation: an introduction,” Ultrasonics: 22(1) (1984) 25-28.
    30. K. S. Suslick, “The chemical effects of ultrasound,” Sci. Am.: 80 (1989) 80-86.
    31. 田福助,電化學基本原理與應用,五洲出版社(2004)。

    QR CODE
    :::